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SLI§ = 5L /Overview of the Laboratory of Weak Light Nonlinear Photonics
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7 $H iR /Projects under Researching
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7 32 T1E4R & /Scientific Report

ek W E 5% FHAR/ Nonlinear Physics and Photonics Techniques
o N HEE

1. ANLEGE 7 T IEG S AR PRI 5T

O TALG A NS D, B TR A s g B A Hog — el 9w e
W BhAH . HEREL  Iia] LR R SRR 2 AR @At Bk, @
LR IRBER B 20 2% 53 T A5 R IR AE AR TS, SR IR [ 2 2 45 A IO Y FRIEE B RV
S| AR B =, TR TR IR IR R AL R BT AR AT BRI B AR A R,
FRATTA ok =T AN [ A P B S 5 Lk -2 T (14 50 25 1 A R S B 77 0F A 8 ek W oA D G &4
#, RIR I > 7 I B ME SRS TR RO 27 R 2 M AR — e Y I 9 IR 4R

2. JEVSAHR MV 3B A A5 A PR O 2 1 R AT

AT AT 1R G /N FLIMIAE 24 () it -, 5 LN R R 1) A 5 R ) S HE 51 A i ek
PEH T PERIHT KPR GRS A, F ST T 3K LG5 A 1) 304 5 ik 2 B Y T R S I )
PESCR IRV, FER X LER N AL T BB T o I TG 1 SAE T 2400 T HEAE 4R
RN IIGH, A TRGEREZR S N1, e Hoa]T DR 5 A A3 5ids i 08 o o4 77 1914 )
SAVEAE W KR A I B L I P A E R o R BTl ) S AN 2 s i T 1) b 51
PEAE A AR )/ H R RIAEAS 21T 38 007 T 5 s TVl JR A M 2 304G A IR B s 8UR (1 78 4 4%
o AEXTALEIA AR 49 2107 5 Zaon] SRR I 20 A AL IR 45 3, R i) A TR AT DG 1 44
Xof AV AR AR /NS o IS 4 BURT IS T (9 M 3 K S5 R R T R R

3. AWpe T

(HAH] 532 nm 1) FABOCHRAE BB OE, I 632.8nm - 1) He-Ne SO A AE 28
FEH, WA CFIER I I P A4 7 ) A 3 1L P S 280 400 e A0 8 20 R P A R 7 Ak o E—
(R G N, FEBRIIE A ISR N B G, R SO IR 5 5 T LT A N B S o REXT
iy o P 5 ) s FEEA T IE SRR o ()R 2 i) 23 BB JC A £ T )8 s 70 AS [] 1) 2 T KL RS
FETR AT RCHUR ZRE— S 0 T AR 23 B AT 5 IR B2, DRT kG ph 22 T 23 G 0 =1 38
(I AU R BT AN 2 A 2H 2 E AT RO B33 OO 2R BT BB 1E A8 1E R 3L
T AEMA R R IHAERE . (3) M Z-HR 050 T OB G ) —mh — 05 5 ot &
WIRCEEAR LM TE . (4) 48 T =R B BOGIR G AL 250 SSOdE i) [ T e e 4
WS T2 B A A O GHE 8 o 0T A B G HERTINE A4 T 3 8 I R MEEAT TR, R T A
F A= f G HE I 8 B A G RT3 3k I 44 1 385 45 1 22 RO AR B AN BT BT

2006 EEENV I 090 3 44, WEETITAE 2 445 2006 SESRWCIEEEFSTAE 3 4, BT
TS5 4. — AR AR, TT R S SV K 5 0 1) 6 2 P SR I 5T
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HeTF MR R Fe it 435 R/ Photonics Materials and Advanced Fabrication Techniques
o N: fLEK

AAEFEAE E WA AT AR SC ARG L Appl. Phys. Lett. 2 f#, Opt.
Express — i, J. Phys. Chem.— i« FRTF AL R HI9E A B LRI, KRS G PEIR
BEARAARIRAT 2005 AL RN ROR R 4825 S8 & RBIE G ST, 5 3 5K H AR
FEE VI, AR BB NG E G LT ANA TR

TR T HA | FFRP BRI AARE N XX ER, 2K T BHAE 3 Tyt & L
FRE A . 70 A RS T B EP U A2 e I B R TR IR AL S AR . K W] T B RS e IR
B, A0 Sl 2 Bt R R P[RR, AN AR AT S R0, KiEdE & T AR ot 42
RIGSE o RBUFAL T PINaSIBO; MNaMgBOs, I B AR M KSR AT 1T db thaitafietir, Hysdt
T Na,O-SrO-B,0: /4 & & Ml X AH & .

FE A Y B TP e P R IR B8 1) 1530nm e R A, & T RAECEFMRE. &
Tm’ /YO W5 A% 0 LR R e B RS A R, L R (e IR T WL, R BT LI
ik A BRI 7 AR B AR TP A QK IR A, O ) T S ik ) 7 SRR AR oK 14
1%

K -HE I ) 45 T IE RS 2 R, W R V1B 4252 & 9K TiOy &40 1] Wik
A, FLERA-T WO AT P OB S48 2% T WOGHEA 5 B H AT WRINLE 18 2%
ORI 22 TG 20 43 P IR0 FH R <38 20 45 40 v v 1 R M K THO, mI LG AEAL TR, i i A 25 41
A WG AL TS P O I N 3 28 TiO, ] WG HEAL o

W9 TR InGaAs &1 i P B 13 1%, IR IR R sl A 1B DA K i i
BEAS R4 b 75 i FE SRR 7 1IN ) 5 7 UG I SG R . AEE TP T A L eHLE
T HELANE MR HI& TAE. 76 B MEH-PPV (LRt E, RIS B S BARBRIIE T
MEH-PPV/PbS ¥ fi S G K.

KRS BEZAT B 25 G AN B EOR, 7 3mm JEARRREE S 1 S T2k Ha i i
W, AERAIT R IR T 3 MRS 75 1mm JEB PR AL 2% th A 3
1.5um X5 WROK BN S5 K . T4 RS EOCHNE 2 B DL B 45 dh g, Sl T
1.45~1.72pum P B« 7EIRE 30°C, Hhiz e ZhE 300mW B, [59G4 H D)%k 56mw,
BRI 18.7%.

T o DAt B2 243 B 3 B [ WV R TV K2R —4F [ o R0 31095 [ 1R U 1) 2
s AR AT AN S E BrAZ i i i) B B, b A SR B O T2 R Vs el . 2300
R NG LB R EEZAE AR 13 i 4 B BRSO G T RSB E RSk eS
FEH EDE2A 2225 2006 AR K SESEIRS « HITFTE 14 4, Rt 2 44 BRvat
A 10 44, Mol A —44.
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9 tAEk I K B T AT 62/ Weak Light Nonlinear Optics and Quantum Coherent Optics
ot N V%

2006 L “ 59 GARGME SR AR OGS O In) E AR LR T TS T kR

gk AL A 0 AR G 2R A AR B () E RS8N SIS B T B ok o B D Tt A e, I
FELL T A di A WL B GEAL IS s WE9T T BB R IR R 5 A4 1) 28 A U B8R 1 IR A%
I, WP UE SO GO BT I R R e KT O B 1 IIT %

Wk 5 NI 78 ARV 58 ZE BT U LAE 2 M e LR DU R D i 45 Hh & A 54
RG-Sk, R GIEAE A TG 1 i h AL IR RF AR T VR4 OIS, SEIL T SO RR 125
AT BRI 28 « TE 4 2B i1 LA R R B I 2 55 2 P XK B B i+, AH
K45 BAE Physical Review Letters. Optics & Photonics News. Optics Letters 25 = 7K V22 AR T
W bk

PN ZAZIT LA RGN IT T WS B AR fb AR 59 D6 AR S P RN (s min s R FH s 44
FOE DA T e R A R AR B 5 R P LA el iR O SR A T B R R A 1) DI AT A e B,
INfB] 2 M e s IR AR R IATAS BT JE T KOG ET I 9 oK R € [ A G 28R & FD BB
AT TR TR T W9

AT AR 2006 LIRS 5K HAR LA BITE 130, 9737 vRRI 1 I, R E AU
SIH 2 i, HETEWZ ]2 330 J770. 2006 FEEHEAT 6 NIRIG L2247, 8 A3RTHh 14
A7, HENP AR S 2 1) 32 B A AR A B R S R b o AR RS RS [EEOM 2 N O &k 1l
o, D) R ERHERUT 2 N ORI AERIERR, R o VERZEHE A (Frontiers
of Physics in China) . (#JHEL) . (HOBHIR)Y . (AN S=KP2AD) G2 Fh Lk AT
WigmZz, b EYI RS WA R N AN KT 2R S U 2 o PNVES 34 Rk BB B 19 A

CHOLHEAR) HummZ.
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K i R AL Fe 4% B A /Spectral Charaterization and Sensing Techniques
g N 4

AR FEAE FE WA B A AR SC U L9 Appl. Phys. 176, #)BEA4R 2
Fio HUE AW LRI, 58 A RRMITRE G DU, AERPRMIFIH 10

FENaY (WOW) it AL R} rP 1) B R PRI 9 T 2R 18 30— » SR AE e P BE A BT AT A
JCHLEIT I CRIEZEFR/NLD . AEROCTEVEIUA R T =R SOFES /N a4 EE U T bt
RN & LA T KSR CRIEESD .

FECALAR B T, JRAE-F B3 KR i Appl. Phys 30 F.

AN AR INLAE I TS RPR AN R DI 757 U, R G HREHREEL AN DNA 4556 75 T 52
KAV -

J S0 ) 2885 /N ALAE DG AR 3 A0, ] e ARABURE 2 T 70 T A I T R A T, DR AR
SCE R

IRIGEHT BN AL N TG 2, 228 AR 2L MG A 2 b BT 0 =49
T 7% FUIRAL SR 2O RAL A HLE SR DGR AL DU BN A R 1 R AL
HRRRIL TR

HIE B IE N RRGE S AR A OGRS 7 KW R — 300, “ ZEAMNBOGAIN R R 3L &
JIE” R R T,

R B AR HCT F0 e A A BB R IR PR A 4R R R R A UL K B R B
P AT BRI A B U H A24F, IR SPIE Photnics West £¥IHATZE 0L, JFAEN
AN EE VAT BRI D 5 R T 2 B R Rt

FAREGUAE 11 4%, el 3 44, BeMbmbsut 3 44, it 1 4.
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2 Sk KF R S45 884/ Semiconductor Growth and Devices
Mot N FPKE

1. BleretfE

E15F MBE 2 418 P[] AR 95 P B0 AR ME SR BE 280 IR I, 17 e e i [l R G R B G 38 &R
ST S, SOESERUE, SLHVTRE T S GG A R 0T LA Wi AR K S
Hoof InP/InP AEMEIE T 2S5 ERE 5 R IIPRAS W LG, WREIS B SR
AR DGR R P TS S B R P B, IR AR T IR SO S R S L2 S U B
MR R, G T BRIP4 R, ST T InGaP/GaAs. InGaAs/InP. GaAs/InGaAsP %5
T SAARMORH DT HC AR K S LR JBUEAT T MBI, AN — R R B SR S Y 5
R ERAFBEE T A5

FE SR IR 1) B 2K 863 I H AN HERE 4 7 fi I H T R 7T AR o 04K T AR5 R BRI 7 1k
ERG 2 B o mA ik K48 (DBR) M HAMEEOEA (VECSEL) &5 45811
SPl 2, JEWTIT T A BOTH SAE TT 2, HilA OB S B TR AW & () DBR
HIVECSEL (5 St % (995%) #4KL. [RINIFRE T InGaAs/GaAs F1-BF S FLN ) #ME2 )
RANWEIT, JEHUAS TR Btk .

Xf InAs/GaAs &1 AR 1) L 2 S EROG 2 BT AR B2 8 R AT T IR AT,
il 4 Y 1200nm 1 AO0EEE .

2. R#HIHE

(1) HZK 863 I H (2006~2008): “JZLiH 1064nm - T4 B AME R I A SFHEOG A U5
MEHAHI%: TH%'S5: 2006AA03Z413.,

(2) REEMEAIESIE (2006~2008): “JEAIH 980nm - T 443 B AN K [ A O
SR IIHIET WH % : 06YFIZIC01100.

3. FARRH
2006 FEANN RIS IS WEF AR HIES) 3 K, KESWAL LS F.
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(2]
(3]
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wEE, K

200610014585.8; —f [ & N A B AR BE AR A I AR SO A% s KOs R U, ATMEE,
ik%, Fok, mdE.

200710056669.2; ZLAMBOGEM R &ILHI Tk KW BIE, RE.

FREF/ Patents Approved

[1]

Z1.200410019732.1; ik~ b e MR im ARl & T2 KW INE, K, LBk, &k,
X, AN, BREK, VFRE.

[2] Z1200410019454.X; #aREF NiEAE KA A LRI A R G L T2 R, ANVE,

fLB%, 9K¥, VR, SCHE, BAME, XA, R, RO, k.
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Carrier dynamics of submonolayer InGaAs/GaAs quantum dots (QDs) were studied by
microphotoluminecence (MPL), selectively excited photoluminescence (SEPL), and time-resolved
photoluminescence (TRPL). MPL and SEPL show the coexistence of localized and delocalized
states, and different local phonon modes. TRPL reveals shorter recombination lifetimes and longer
capture times for the QDs with higher emission energy. This suggests that the smallest SML QDs are
formed by perfectly vertically correlated two-dimensional InAs islands, having the highest In
content and the lowest emission energy, while a slight deviation from the perfectly vertical
correlation produces larger QDs with lower In content and higher emission energy. © 2006

American Institute of Physics. [DOL: 10.1063/1.2219394]

Self-assembled quantum dots (QDs) can be grown either
in the conventional Stranski-Krastanow (SK) mode or via
submonolayer (SML) deposition.l’5 SML InGaAs/GaAs QD
heterostrutures are verified to be a quantum-dot-quantum-
well structure (QDQW), in which local clusters with higher
In content are embedded in a lateral quantum well with
lower In content.®’ Although SML InGaAs QD lasers with
high gain or power have been realized recently,5’8’9 very few
works have been carried out on the carrier dynamics of SML
QDs, as compared with SK QDs.l’lo_12 The study of the car-
rier dynamics of SML QD structures is of great interest not
only for the understanding of the fundamental physics of
zero-dimensional structures but also for optoelectronic de-
vice applications.

In this letter, we use microphotoluminescence (MPL),
selectively excited photoluminescence (SEPL), and time re-
solved photoluminescence (TRPL) to explore the localiza-
tion, capture, and recombination of carriers in SML QD
structures, at low temperature. We found that the capture
time and the recombination lifetime of SML QDs depend
strongly on the emission energy, which could be explained
by analyzing the growth mechanism of SML QDs.

SML InGaAs/GaAs QDs was formed by alternate depo-
sition of 0.5 ML InAs and 2.5 ML GaAs for ten times (see
Ref. 6 for the details of the sample preparation). The MPL
and SEPL were measured at 10 K, and the TRPL measure-
ments were carried out at 5 K. In MPL, the incident light
from a He—Ne laser at the wavelength of 632.8 nm was fo-
cused on the sample to a spot of around 2 um in diameter. In

YElectronic mail: zcxu@nankai.edu.cn

0003-6951/2006/89(1)/013113/3/$23.00

89, 013113-1

SEPL, a wavelength-tunable Ti:sapphire laser was used for
excitation. In the TRPL setup, the sample was cooled in a
liquid helium cryostat and excited in the GaAs barriers with
120 fs pulses from a Ti:sapphire laser at the wavelength of
800 nm and the PL signal was collected, dispersed, and syn-
chronously detected using a streak camera with 2.5 ps time
resolution. The excitation spots in both REPL and TRPL are
about 50 wm in diameter.

The size distribution of QD ensembles could vary
slightly with the position on the wafer as seen in Fig. 1(a) at
low excitation density. The fine structures for the three spec-
tra are different from each other showing emission from in-
dividual QDs. These features are reproducible so we could
rule out the effect of noise. As the areal density of the SML
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FIG. 1. (Color online) Microphotoluminecence spectra at 10 K at three
different points on the wafer (A, B, and C) 1 mm apart, at low excitation
power density (a) and at high excitation power density (b).
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FIG. 2. (Color online) The PL spectra of the SML QD structure at the
excitation energies of 1.959 eV above the GaAs barrier band gap and
1.336 eV just above the edge energy of the QW at 10 K. The inset zooms in
the 1LO parts, and the solid line is a guide for the eye.

QDs is about 5X 10" cm™ as reported in Ref. 6, about
15 000 SML QDs are probed at the same time. This explains
the high density of sharp lines throughout the whole contour
of the QD PL emission. At high excitation power density, a
peak at 1.326 eV dominates the whole spectrum, and the
peak energies for the three excitation points are identical, as
shown in Fig. 1(b). This indicates that the peak at 1.326 eV
originates from the delocalized states in the studied structure,
corresponding to the QW states.”

In SEPL measurement with the excitation energy E,
tuned near to the edge of the density of states (DOS) in the
QW (E=1.336 eV), a few sharp resonant lines and a reso-
nant PL band appear within the broad PL band, near to one
longitudinal optical [(LO) 31-36 meV] and 2LO (66 meV)
phonon energies below the excitation energy, respectively, as
shown in Fig. 2. To confirm that these sharp lines are not
attributed to resonant Raman scattering, the polarization di-
rections of the incident laser beam and the detected PL signal

were set to be along the [110] and the [1,1,0] directions,
respectively, in the backscattering geometry, as in Ref. 13. A
Raman signal cannot be detected in this geometry, according
to the selection rules.'* When the excitation energy is less
than one GaAs LO-phonon energy above the lateral QW
ground state in the SML-grown QDQW structure, the prob-
ability for the photon-excited carriers (excitons) to relax
within the QW states by emission of only longitudinal acous-
tic (LA) phonons is less than the carrier (exciton) capture
probability from QW to QDs by emission of LO phonons.
Dots which can be accessed by emission of LO phonons are
populated more efficiently, since their delta-function-like
DOS can be accessed directly from the excited energy level
in the QW by LO phonon emission.

The complex structure in the 1LO resonant peaks con-
sists of several optical phonon modes whose energies are
36.7, 34.5, 32.9, and 31.3 meV, respectively, as shown in the
inset of Fig. 2. We assign these lines to the LO phonon
modes in the GaAs barrier, the GaAs/InAs interface, the
InGaAs lateral QW, and the InGaAs QDs, respectively. The
2L0O resonance occurs at the energy of 66 meV below the
excitation energy, nearly two times the LO phonon energies
of QW. The coexistence of several optical phonon modes
indicates the complex structure of SML QDs.

The electron-hole (e-h) pairs (or excitons) generated in
the GaAs barrier are either captured directly into the QW
where they relax and are finally captured by the QDs, or they
are directly captured by the QDs or recombine in the QW.
Then the captured carries will recombine inside the QDs.

Appl. Phys. Lett. 89, 013113 (2006)
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FIG. 3. (Color online) TRPL detected at different ground states of SML
QDs at 5 K, (a) in the long time scale for the evaluation of the decay time;
(b) in the short time scale for the evaluation of the rise time.

Figure 3 shows the PL transient of QD states in SML
InGaAs/GaAs QD structures, at an excitation density of
101 W/cm? (corresponding to 10'7 electron-hole pairs/
cm? pulse). On the long timescale [Fig. 3(a)], the PL decay
can be well fitted by a monoexponential function, and the
decay time 7, can be evaluated. On the short timescale [Fig.
3(b)], the PL transients can be fitted by the expression'

1(z) o [exp(=1/7,) = exp(= 1/ 7)) Y(7, = 7,), (1)

where 7, is the rise time of PL transients, which can provide
information on carrier capture into the QDs.

Fig. 4 shows the values of 7; and 7, plotted against the
QD emission energy. With increasing QD transition energy,
7, decreases from 840 to 500 ps, while 7, increases from
35 to 60 ps

For SK QDs, QDs with higher emission energy are be-
lieved to be smaller, and stronger electron-hole overlap oc-
curs inside the QDs, resulting in longer lifetime.'® Recently,
a reduction of the radiative lifetime for smaller SK QDs with
higher emission energy has been observed, which was ex-
plained by the reduced electron-hole overlap integral due to
the larger piezoelectric effect in larger QDs.]7 However, in

SML QDs, (a)
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FIG. 4. (Color online) Dependence of the decay (rise) time with respect to
the QD emission energy for SML QDs. (a) the integrated PL spectra; (b) the
decay time; and (c) the rise time.
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FIG. 5. (Color online) The schematic diagram showing the relationship
between the size and average In content inside SML QDs. The QD regions
are circled by the dotted lines. SQD and LQD are referred to as small QDs
and larger QDs.

the case of SML QDs, the smallest QDs are formed by per-
fectly vertically correlated two-dimensional (2D) InAs
islands,>>%® and have the highest In content, while slight
deviation from the perfect vertical correlation produces
larger QDs with lower In content, as schematically shown in
Fig. 5. SML QDs with higher emission energy have larger
lateral dimensions but the same height, as suggested by the
in-plane transmisson electron microscope (TEM) image in
Ref. 6. The contrast of the image comes from the difference
of In contents, the brighter parts have less In contents than
the darker parts. Although it is not easy to distinguish the
difference of In contents between the smaller and larger
QDs, we can clearly see the contrast difference between the
lateral InGaAs QWs (bright parts) with lower In contents and
the QDs (darker papers) with higher In content. The lateral
InGaAs QW structure is formed due to the random distribu-
tion of InAs 2D islands within the GaAs matrix. In some
sense, the QW structure can be regarded as the largest QDs
with the lowest In content. The observed shorter PL decay
time for larger SML QDs with higher emission energy may
thus be due to the enhanced overlap of the electron-hole
wave functions. On the other hand, it is also possible that the
exciton wave function extension increases, due to the cou-
pling to QW states, with the increase of the QD emission
energy, which will make the PL decay time even shorter.

Since thermalization and relaxation processes with the
three-dimensional GaAs and the two dimensional QW occur
on a much faster time scale,18 the measured rise time mainly
reflects the capture process into the QD. When the density of
carriers generated by each pulse is much higher than the QD
density as in the present case, the carrier capture is mediated
by Coulomb scattering (Auger process). According to Ref.
19, the Auger coefficient (capture time) decreases (increases)
with the increase of the QD diameter, which coincides with
the present result.

In summary, we have explored the carrier dynamics of
an InGaAs/GaAs QDQW structure formed by submonolayer
deposition. The coexistence of the localized states of QDs

Appl. Phys. Lett. 89, 013113 (2006)

and the delocalized states of QWs are revealed clearly in the
MPL spectra. Different local phonon energies of the QDQW
structure are obtained when the excitation energy is tuned
close to the edge of DOS of QWs, indicating the complex
structure of SML QDs. The recombination lifetime of SML
QDs decreases with the increase of QD emission energy.
This can be explained by assuming that SML QDs with
higher emission energy have lower average In content and
larger volume. The Auger carrier capture time for SML QDs
increases with the increase of QD volume, which coincides
with theoretical predictions.19
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Photorefractive properties of congruent lithium niobate crystals codoped with HfO, and Fe,0; were
investigated and it was found that Fe ions are still located at Li sites as photorefractive centers when
the doping concentration of HfO, goes above the threshold value. As a result, their photorefractive
response speed and sensitivity are significantly enhanced. Meanwhile, the high saturation diffraction
efficiency is still maintained. Experimental results definitely show that Hf is now the most effective
doping element for LiNbO5: Fe crystal to improve its photorefractive properties. © 2006 American

Institute of Physics. [DOL: 10.1063/1.2349306]

Lithium niobate (LINbO3, LN) crystal is one of the most
widely used photorefractive materials in the holographic vol-
ume storage. Transition-metal elements, such as Fe, Cu, and
Mn, are usually added into LiNbO; to improve its photore-
fractive characteristics.' Among them, Fe,O3 doped LiNbO,
(LiNbO;: Fe) is one of the most excellent candidate materi-
als for optical data storage due to its high diffraction effi-
ciency, high photorefractive sensitivity, high data storage
density, long storage lifetime, and well-considered thermally
fixing method. However, several problems, such as low re-
sponse speed and strong light-induced scattering, impede the
application of LiNbOj:Fe crystal in holographic volume
storage. Doping with damage-resistant elements, such as Mg,
Zn, In, and Sc, has been found to be a useful way to solve
these problems.z’5 It has been known that there exist thresh-
old concentrations for these dopants. When the doping con-
centrations are above the threshold values, most of the Fe
ions on the Li sites will be repelled by these damage-
resistant ions to the Nb sites. As a result, response speed and
photorefractive sensitivity are remarkably improved, never-
theless diffraction efficiency will apparently decrease.

Recently, hafnium was found to be another optical
damage-resistant element and its doping threshold concentra-
tion is about 4 mol % in the melt.°® Dissimilar to Mg2+,
Zn**, In**, and Sc**, Hf*" is a tetravalent ion and its valence
is higher than that of Fe**** which suggests that the photo-
refractive properties of LiNbO;:Fe crystals codoped with
HfO, are likely to be different from those codoped with other
damage-resistant elements. In this letter, the holographic
properties of LiNbO; codoped with HfO, and Fe,O5
(LiNbO;: Fe: Hf) are investigated by holographically record-
ing experiments. It is very interesting to find that Fe ions still
locate at Li sites when the doping concentration of HfO,
exceeds the threshold value, and therefore the photorefrac-
tive response speed and sensitivity are greatly improved
while the high diffraction efficiency is maintained.

In the experiments, three congruent LiNbOj crystals
codoped with 0.03% Fe and different concentrations of HfO,
were investigated. The congruent composition was selected
as [Li]/[Nb]=48.38/51.62. Their HfO,-doping concentra-
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tions are 2, 4, and 5 mol %, respectively, with which the
samples are marked as LN:Fe:Hf,, LN:Fe:Hf;, and
LN:Fe:Hfs, as in Table I. The crystals were grown in air by
the Czochralski method along the ¢ axis with the pulling rate
of 1 mm/h and the rotation speed of 12 rpm. After the an-
nealing treatment and artificial polarization, the crystal
sheets with the thicknesses of 1 and 3 mm were cut along the
y faces and optically polished.

Holographic experiment was carried out with the 3 mm
thick plates in a traditional holographically recording con-
figuration, in which a 532 nm diode laser was used. Two
mutually coherent and extraordinary polarized beams with
equal intensity of 250 mW/cm? were used as writing beams
at a crossing angle of 23° on the incident crystal surface. The
grating vector was aligned along the ¢ axis to utilize the
largest electro-optic coefficient r33. The measured diffraction
efficiency » was defined as I,/ (1,+1,), where I; and I, were
the diffracted and transmitted intensities of the readout beam,
respectively.

The recording behavior of the single grating in
LiNbO;:Fe:Hf could be well described by a function of
7(t) = gl 1 —exp(=t/7,)], where 7, is the recording time con-
stant and 7, is the saturation diffraction efficiency. The pho-
torefrgctive sensitivity S  was  defined as S
=(d\ 5/ dt)-o/ (IL), where I is the total recording light inten-
sity and L is the crystal thickness. Table I describes the pho-
torefractive properties of LiNbO;:Fe:Hf crystals, in which
the data for Fe doped and Mg and Fe codoped LiNbO; crys-
tals are also listed for comparison.

Under low illumination intensity (in mW/cm?), the ho-
lographically recording time in LiNbOj;:Fe is usually of the
order of minutes. However, our experimental results in Table
I show that the response rate and sensitivity in our samples
increase greatly with the increase of Hf-doping concentra-
tions. When the HfO,-doping concentration is 2 mol % in
the melt, i.e., below its threshold value, the maximum dif-
fraction efficiency of 68% is obtained. Meanwhile, the re-
sponse time is reduced to 17.2's. When the HfO,-doping
concentration increased to 5 mol %, the response time de-
creased to 10.7 s while the saturation diffraction efficiency
was kept as high as 55.4%. But for Mg and Fe codoped
LiNbO3,2 when MgO-doping concentration increases from
2 to 6 mol %, namely, from below to above its threshold

© 2006 American Institute of Physics
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TABLE I. Photorefractive properties of Fe doped, Mg and Fe codoped, and Hf and Fe codoped LN crystals.
Incident power density of a single beam used for Hf and Fe codoped samples was approximately 250 mW/cm?,

Doping concentrations

Photorefractive properties

Sample Fe (wt%) Mg (mol %)  Hf (mol %) Nt (%) 7, (s) S (cm/J) Refs.
LN:Fe 0.01 70 160 2
LN:Fe:Mg, 0.01 2 70 60 2
LN:Fe: Mg, 001 6 15 15 2
LN:Fe:Hf, 0.03 2 68.0 172 3.99 This work
LN:Fe:Hf, 0.03 47.6 12.6 436 This work
LN:Fe:Hf; 0.03 5 55.4 10.7 5.23 This work

concentration (the threshold concentration of MgO is about
4.6 mol % in melt’), the recording speed is increased 4
times, while the maximum diffraction efficiency is reduced
4.7 times.

The holographic properties of LiNbOj; crystal mainly de-
pend on its photorefractive centers. In LiNbOj:Fe crystal,
the photovoltaic effect is the dominant charge-transport
mechanism'® and the dominant charge carriers are
electrons.'! Hence in our samples, Hf ions do not participate
in the charge-transport process and Fe ions also play a domi-
nant role. However, the codoped hafnium ions may affect
concentrations and incorporation of other ions, which con-
tribute to the photoconductivity oy, As for LN:Fe:Hf,
2 mol % of the Hf-doping concentration is below its thresh-
old concentration, thus there exists a small portion of antisite
Nb ions (Nb on Li sites, Nby;) in the sample, which is the
most probable electron acceptor in a Li-deficient LiNbO3
host. When the HfO,-doping concentration is above its
threshold value, Nby; are completely removed and photocon-
ductivity oy, greatly increases,” which makes the response
speed and the photorefractive sensitivity enhanced.

The OH™ absorption spectra and UV-visible absorption
spectra of our 1 mm thick plates were measured with a
Magna-560 Fourier transform infrared spectrophotometer
and a Beckman DU-8B spectrophotometer, respectively, with
the incident light transmitting along the y axis at room tem-
peratures. Figure 1 shows the OH™ absorption spectra of our
samples, in which the absorption band is situated at about
3484 cm™! for LN:Fe:Hf, and located near 3487 cm™' for
LN:Fe:Hf, and LN:Fe:Hfs. These experimental results are
the same as those obtained in single doped LiNbO;:Hf
crystals,8 where the presence of 3487 cm™' absorption band
indicates that the Hf-doping concentration has reached its

.80/ :
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FIG. 1. OH™ absorption spectra of LiNbOj crystals codoped with 0.03% Fe
and different concentrations of Hf. A, B, and C is for 2, 4, and 5 mol % Hf,
respectively.

threshold level and Hf has occupied normal Nb sites. In Mg
and Fe codoped LiNbOj; crystals with its MgO-doping con-
centrations above threshold, besides 3535 cm™! absorption
band related with Mgf\f[)—OH‘ complex, another peak corre-
sponding to the vibration of Fef\ﬁ;—OH‘ appears at
3507 cm™!."*" It should be noted that 3507 cm™" absorption
band is not present in LN:Fe:Hf, and LN:Fe:Hfs, which
suggests that the lattice locations of Fe** ions are unaltered
and still located at Li sites in spite of HfO,-doping concen-
trations above its threshold value. As we know, when Mg-
doping concentration goes above its threshold, Fe** ions will
move from Li sites to Nb sites and the light-induced refrac-
tive index change can be greatly reduced. Some
researchers'*'® attribute this reduction of photorefractive
properties to an abrupt decrease of the capture cross section
of electrons by Fe** and therefore the sharp increase of pho-
toconductivity. When the concentration of Hf exceeds its
threshold concentration, all antisite defects Nby; are cleared
up and thus response time is shortened greatly, nevertheless
Fe’* ions are still located at Li sites acting as electron accep-
tors, therefore, the saturation diffraction efficiency of
LN:Fe:Hf; crystal does not greatly decrease with respect to
the sample of LN:Fe:Hf,. However, 7, for LN:Fe:Hf, is
somewhat lower than that for LN:Fe:Hfs, which might be
due to slightly lower Fe concentration in LN:Fe:Hf,, espe-
cially those of Fe?* ions. This supposition is partly proved by
the UV-visible absorption spectra.

Figure 2 shows UV-visible transmission curves of these
crystals, from which we can see that there is an apparent
absorption band from the absorption edge to the wavelength
of longer than 700 nm for LN:Fe:Hf, and LN:Fe:Hf; crys-
tals, corresponding to Fe** ion absorption.16 It is easily
shown that the shape for LN: Fe: Hfs is almost similar to that
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FIG. 2. Transmittance curves for as-grown LiNbO; crystals codoped with
0.03% Fe and 2 mol % Hf (curve A), 4 mol % Hf (curve B), and 5 mol %

Hf (curve C), respectively.
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TABLE II. Photorefractive properties for reduced LN:Fe:Hf crystals.

Sample Nt (%) 7, (s) S (cm/J)
LN:Fe:Hf, 51.2 9.9 6.77
LN:Fe:Hf, 47.0 6.7 7.65
LN:Fe:Hf; 454 2.6 12.6

for LN:Fe:Hf,, which means that the optical properties of
Fe”* ions are unchanged with the increase of HfO,-doping
concentration up to 5 mol %. As it has been commented
above, Fe’* ions also remain at Li sites in LN:Fe:Hfs crys-
tal, and the valence state of Fe?* is lower than that of Fe3*
ions. We believe that Fe>* ions are also located at Li sites as
donor centers. But for LN : Fe: Hf,, there is no such an obvi-
ous broadband absorption, and a noticeable blueshift of its
absorption edge can be observed. This observed difference
implies that the involvement of total Fe as well as Fe?* ions
in LN:Fe: Hf, is somewhat lower than those of our other two
samples and hence the small number of effective electrons is
available. As a result, LN:Fe: Hf}, crystal shows a lower 7.

It is known that the photoconductivity and photorefrac-
tive sensitivity of Fe doped LiNbOj crystals can be opti-
mized for holographic data storage by thermally reducing or
oxidizing treatments. The reduction treatment for our
samples was also accomplished in an argon atmosphere at
750 °C for 30 min. The holographic properties for these re-
duced crystals are shown in Table II. As expected, the maxi-
mum diffraction efficiency slightly decreases, while the re-
sponse speed and sensitivity are further improved by
reduction treatment. It is obvious that photorefractive prop-
erties for LN:Fe: Hf5 are much more excellent than those for
LN:Fe:Mg¢. The shortest response time exhibited in
LN:Fe:Hfs is only 2.6 s while it still shows a large satura-
tion diffraction efficiency of 45.4%. In iron doped LN crys-
tals, the heavy reduction will aggravate absorption, which
results in strong record light energy loss. Doping with HfO,
is a good solution for this problem. In our experiments, the
ratio of the transmitting intensity to the incident intensity
could be as high as 40% for the reduced LN: Fe: Hfs.

Appl. Phys. Lett. 89, 101126 (2006)

In summary, the effects of incorporating Hf** ions into
LiNbOj:Fe crystals were studied by holographic measure-
ment. Dissimilar to Mg?* (or Zn?*, In**) and Fe codoped
LiNbO; crystals, Fe ions still remain at Li sites in
LiNbO;:Fe:Hf crystals when the HfO,-doping concentra-
tion goes above its threshold value, as a result, the response
rate and sensitivity are greatly improved. Meanwhile, the
saturation diffraction efficiency remains at a high value.
Therefore, hafnium ion is now the most efficient one among
optical damage-resistant ions to improve the photorefractive
properties of LiNbOj5:Fe crystal.
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Changjiang Scholars and Innovative Research Team in Uni-
versity and the National Natural Science Foundation of
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Abstract: We report on an active tuning of nonlinear absorption from
reverse saturable absorption to saturable absorption in supramolecular zinc
diphenylporphyrins by the combination of molecular and supramolecular
levels at 532, 542 and 552 nm. Firstly, the modifications of molecular
structures with bromination result in a discrete but regular change in
magnitude and sign of nonlinear absorption (NLA). Furthermore, a fine
tuning of NLA was obtained by the intermolecular weak interaction of
pyridine and zinc porphyrins. Using an association model, we theoretically
simulate the change of NLA. Compared with modifying molecular
structures of conventional organic materials, the weak intermolecular
mnteraction of supramolecular porphyrins has another advantage that it can
be realized more easily and flexibly to change NLA.

@2006 Optical Society of America

OCIS codes: (1904710) Optical nonlinearities in organic materials; Reverse saturable
absorption; Saturable absorption; (160.4330) Nonlinear optical materials; {(300.1030) Absorption.
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1. Introduction

Organic nonlinear optical (NLO) materials have been thought of as one of prospective
materials because of their potential flexibility and variability [1-3]. To enhance and control
optical nonlinearities, the structure-nonlinearity relationship has been investigated in large
numbers of organic materials [4-9]. However, it is difficult to realize a fine-tuning and large
enhancement of optical nonlinear coefficients, if only depending on the modifications of
molecular structures. The emergence of supramolecular chemistry, the chemistry beyond the
molecule, brought a new chance to the development of organic NLO materials due to the
introduction of a weak intermolecular interaction called non-covalent bond [10]. For example,
optical nonlinearities have been enhanced about 2-3 orders of magnitude in supramolecular
porphyrins [11-13].

Porphyrins are well known to exhibit excited state absorption (ESA), including reverse
saturable absorption (RSA) and saturable absorption (SA), in the visible wavelength range
[14, 15] and even near-infrared wavelength range [16]. As a type of nonlinear absorption
(NLA), ESA is usually described by a five-level model [17]. Tt is caused by the further
promotion of the excited electron from the first excited state (3, or Ty) to a higher-lying state
(8, or T,) after the electrons in ground state were excited. The singlet excited state cross-
section og and triplet excited state cross-section o7 are larger or smaller than that of ground
state oo for RSA or SA, respectively. In this paper, we report an active tuning of NLA from
RSA to SA by supramolecular incorporation of pyridine into zinc diphenylporphyrins at 532,
542, and 552 nm. This method can provide a simple and convenient route to change NLA of
porphyrins materials in practical applications, such as optical limiting [18, 19], optical
switching [20], and spatial light modulation [21], ete.
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2. Experiment section

A series of diphenylporphyrins we synthesized have been characterized by "H NMR recerded
on a Bruker Av300 spectrometer and MALDI-TOF-MS spectra using a Thermo Finnign L.CQ
Advantage mass spectrometer. UV absorption spectra and titration spectra were recorded at

25°C on a Cary 300 UV spectrophotometer, using a quartz cell of lem path length. The

concentrations of all porphyrins are 1.0x10° M for UV spectra in chloroform. In titration
measurements, a aliquot of a solution of pyridine (5.0x10° M in chloroform) was added to a
solution of zinc porphyrins (2.0x107° M in chloroform), and the resulting solutions were

subjected to linear absorption spectroscopy at 25°C. Each spectrum was corrected with a
dilution factor and background subtraction. In measurements of nonlinear absorption using Z.-
scan technique, a Q-switched Nd:YAG laser (Continuum Surelite-IT) and a mode-locked
Nd:YAG laser (Continuum Model PY61) were used to generate 5-ns pulses and 30-ps pulses
at the wavelength of 532 nm. The lasers at 512 nm, 542 nm, and 552 nm are from a
commercial optical parametric oscillator (Continuum Panther OPO) pumped by the third
harmonic (355 nm) from Continuum Surelite-1T with a repetition rate of 10 Hz and tunable in
the range of 420-2500 nm, and the pulse duration is about 4-5 ns. The beam waist was 18-24
pm for different wavelengths and different pulse duration. The incident and transmitted pulse
energies were measured simultaneously with two energy detectors (Molectron J33-10). All of
solutions of porphyrins used in Z-scan measurements had a concentration of 2.0x10*M and
were poured 1n a 1-mm quartz cuvette.

3. Results and discussion

The spectra and structures of diphenylporphyrins used in our experiments are shown in Fig.
1(a). There are about 10nm red-shift in both Soret and Q bands as bromination increases.
Nonlinear absorption measurements were carried out by the open-aperture Z-scan technique
[22]. Figure 1(b) gives the open-aperture Z-scan curves of three porphyrins with 5-ns pulse
duration at 532 nm, and the solid lines are theoretical fitting curves. The change of open-
aperture Z-scan curves from peak to valley indicated that a transition from SA to RSA
happens with bromination. Since the ESA is dominated by absorption of triplet excited states
(T;—T,) in the case of nanosecond pulsed laser ncidence, and by absorption of singlet
excited states (5;—5,) in the case of picosecond pulsed laser incidence [23], to exactly obtain
the value of os, we have also performed Z-scan experiments of picosecond pulsed laser. The
photophysical parameters of ZnDPP, ZnDPPBr, and ZnDPPBr; obtained are shown in Tab. 1,
where 19 and tgc are the lifetime of S, and the intersystem crossing time of S;—T,,
respectively.
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Fig. 1. The linear and nonlinear absorption data of ZnDPP, ZnDPPBr, and ZnDPPBry. (a)
Molecular structures and Linear absorption spectra. (b) Open-aperture Z-scan curves with 5-ns
pulse duration at 532nm. Symbols represent experimental data; solid lines are theoretical
fittings using a five-level model.
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Table 1. Photophysical parameters of ZnDPP, ZnDPPBr, and ZnDPPBr,

Material SZE:'(bna;"lnng S;iagisn) (10 3% ) (1 O'Si n?) (1 O’ETcmz) (;g) ‘(EIEESC)
ZnDPP 409 536 8.72 2.5 2.7 50 30
ZnDPPBr 419 545 4.25 34 36 30 7.0
ZnDPPBr, 430 554 1.26 4.6 18 0.7 50

The modifications of molecular structures by bromination result in a discrete but regular
change in magnitude and sign of NLA However, in practical application of NLA, such as
optical limiting, all optical switching, and spatial light modulation, it may be necessary to
continuously tune NLA. Using solvent effect, we have obtained flexible alteration of optical
nonlinearities in the solutions of iodine [24], but the nature of solvent effect remains unclear.
Since weak interactions in supramolecular porphyrins can provide a sufficient thermodynamic
driving force to influence optical properties of system, here we utilize the binding model of
the pyridine group coordinated to zinc porphyrins, which has been intensively investigated
[25], to manipulate the fine-tuning process. Pyridine is chosen as a ligand n our study because
it has almost no nonlinear response in visible-wavelength region, and simple 1:1 prophyrin-
pyridine (Por-Py) complexes can be obtained.

a [Py], - [Por
() 1.0 —0 ,Eb)
—02%
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Fig. 2. Change of nonlinear absorption for ZnDPP with various concentration of pyridine. (a)
Open-aperture Z-scan curves of at 532nm. (b) Absorption cross-sections of ground and excited
states vs [Py]q:[Por];. The solid lines are fittings with E=048x10° M using association model.
Inset gives the equilibrium equation between zinc porphyrins and pyridine.

Figure 2 shows the open-aperture Z-scan curves in the case of nanosecond pulsed laser
incidence and absorption cross-sections of ground and excited states of ZnDPP with the
change of concentration of pyridine at 532 nm. In our measurements, the concentration of zinc
porphyrins was kept unchanged. It should be noted that the transmittances in Fig. 2(a) are not
normalized by linear transmittance, not like that in Fig. 1(b). As the concentration of pyridine
increased, more Por'Py was formed, which led to a drastic decrease of linear absorption (see
the transmittance change at both sides of Z-scan curves), but a small change of ESA in
nonlinear region (see the transmittance change at the focus). Under the co-effect of linear
absorption and ESA, a transition from SA to RSA with gradual change is shown in Fig. 2(a).
From Fig. 2(b), we can see the changes of linear absorption and ESA more clearly.

The equilibrium equation between porphyrin and pyridine due to zinc-pyridine interaction
1s given in the inset of Fig. 2(b), where

x [Por - Py] [Por-Py]
= - (M
[Por][Py] ([Por],~[Por- Py])([Py],-[Por Py])
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is the association constant [26], and [PorPy], [Por], and [Py] are the equilibrium
concentrations of zinc PorPy complex, zinc porphyrin, and pyridine, while [Por]y and [Py]s
are the total concentrations of zinc porphyrin and pyridine, respectively. Because the [Por],
(2.0x10" M) was kept unchanged in our experiments, when pyridine was added in excess
amounts, [Por-Py]—[Por]eand optical properties of system tended to saturate gradually. When
the ratio of [Py], to [Por]y is about larger than 20, the changes of Z-scan curves and o, became
very slow, as shown in Fig. 2.
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Fig. 3. Spectrophotometric titrations of (a) ZnDPP, (b) ZnDPPBr, and (c) ZnDPPBr; with
pyridine. The cross section difference (or—ay) of (d) ZnDPP, (¢) ZnDPPBr, and (f) ZnDPPBr;
vs the concentration of pyridine [Py]y:[Por];. The dotted lines represent or—o=0. If o050,

RSA will oceur, and If or—07<0, SA will occur. The solid fitting curves are obtained directly
from the association model.

To obtain the value of K, titrations of ZnDPP, ZnDPPBr, and ZnDPPBr; with pyridine
were performed, and such absorption spectral changes are illustrated in Figs. 3(a)-3(c). Upon
the addition of pyridine, the  bands at 536 nm, 546 nm, and 555 nm corresponding to the
unbound zinc porphyring gradually disappeared and new bands appeared at 550 nm, 560 nm,
and 570 nm for ZnDPP, ZnDPPBr, and ZnDPPBr,. The new bands are characteristics of
PorPy complexes. Clear isosbestic points are observed at 542 nm, 552 nm, and 563 nm for
ZnDPP, ZnDPPEBr, and ZnDPPBr,, respectively, and this is indicative of sequential two-state
equilibria. The black lines are the absorption spectra with extreme excessive pyridine, which
can be thought that the coordination interaction between pyridine and zinc porphyrins is
sufficient. The calculated X for pyridine ligation to the zinc are 0.48x10*M™, 1.03x10*M?,
and 1.55x10*M™ for ZnDPP, ZnDPPBr, and ZnDPPBr, respectively. If [Pylo, [Por]pand K
are given, [Por-Py] can be derived from Eq. (1). And then, we can easily predict the change of
nonlinear absorption of system according to the ratio of porphyrins to Poy-Py complexes. The
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theoretical fittings using the model above, called association model, agree well with the
experimental data, as shown in Fig. 2(b). The similar results can be also observed for
ZnDPPBr at 542nm and ZnDPPBr; at 552nm due to about 10 nm red-shift of absorption band.

For ZnDPP, as pyridine is added, absorption spectral changes at 512 nm, 542 nm, and 552
nm are different from that at 532 nm in Fig. 3(a). We now consider the tuning of NLA at other
three wavelengths (512 nm, 542 nm, and 552 nm), and Z-scan experiments with nanosecond
pulsed laser incidence were performed to obtain values of op at different wavelengths. It
should be noted that oy has also a dependence on [PorPy], but it is much weaker than a; as
shown m Fig. 2(b). Here, the cross section difference (or—o0p) 13 infroduced as a useful
indicator of NLA. Because the weak interaction between porphyrin and pyridine has a larger
effect on oy than on oy, it can be predicted how the nonlinear absorption of ZnDPP changes at
these wavelengths. As the ratio of [Py]y to [Por]y increases, there is an opposite change of
NLA at 552 nm compared with that at 532 nm, as shown in Fig. 3(d), but RSA at 512 nm and
SA at 542 nm almost remain unchanged. In the same way, Figs. 3(e) and 3(f) give the
regularity of changes of or—oo for ZnDPPBr and ZnDPPBr, at different wavelengths. For
ZnDPPEr and ZnDPPBr,, faster tendency to saturation of o1—ay can be caused by a larger K
compared with ZnDPP, which indicates that they have a stronger association with pyridine
than ZnDPP. The agreement between the experimental data and the fitting curves seems to
support the association model. The red-shift of linear absorption band can arise from a
destabilization of the highest occupied molecular orbital (HOMO) with little effect on the
lowest unoccupied molecular orbital (LUMO) due to a flow of charge from the axial ligand to
the porphyrin ring through the zinc ion [27]. Therefore, the addition of pyridine to zinc
porphyrin can cause a destabilization of ground state, but has little effect on excited states. We
believe that this is why there is a major drop in linear absorption whereas ot almost remains
unchanged when the complex Py Por is formed.

4. Conclusion

In summary, it is feasible for a fine-tuning of NLA in a large range shown in Fig. 3, and we
can easily realize a flexible alteration from a positive NLA (RSA) to a negative NLA (SA) or
a reverse alteration at 532, 542 and 552 nm, based on the bromination of zine
diphenylporphyrins and the weak interaction between zinc porphyrins and pyridine.
Compared with modifying molecular structures of conventional organic materials, the weak
intermolecular interaction of supramolecular porphyrins or other supramolecular materials has
another advantage that it can be realized more easily and flexibly. In applications of NLO
materials, such as optical limiting, optical switching, etc, a fine-tunable nonlinear response
should be more useful, and it makes designs of NLO devices more convenient.

With the rapid development of supramolecular chemistry, more means using weak
interaction will be utilized to control and tune optical nonlinearities of materials, which may
be not easy or even impossible for traditional molecular chemistry. Besides absorption bands,
tuning of polarization, polarizability, and extent of charge transfer in supramolecular system
will be expected to lead to a change of other optical nonlinearities, such as nonlinear
refraction and two-photon absorption. Even we expect to use optical nonlinearities to
characterize supramolecular system. Supramolecular materials have demonstrated better
tailorable optical nonlinearities than conventional organic NLO materials. Therefore, we think
that supramolecular porphyrins are strong candidates for future NL.O materials.
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Abstract: The transmission from a single subwavelength slit in a metal film
with periodic dielectric bars on its surfaces has been analyzed numerically
by the finite-difference time-domain method. Results show that the role of
the periodic dielectric bars is just the same as that of the periodic grooves
directly on the surfaces. With the modulations of dielectric bars on the input
and output surfaces of the metal film, light transmission through the
subwavelength slit is enhanced extraordinarily and confined to directional
emission. The CDEW model is employed to explain the mechanism of the
transmission enhancement and directional emission caused by the periodic
dielectric bars.

©2006 Optical Society of America
OCIS codes: (050.1940) Diffraction; (050.1220) Apertures; (240.6690) Surface waves.
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It is generally known that light transmission through a subwavelength aperture is very poor
and diffracted to all directions according to the standard diffraction theory. Recently,
extraordinarily enhanced transmission was observed through a single subwavelength aperture
in a metal film if surrounded by periodic corrugations on the illuminating side [1]. With
periodic grooves on the output side of the metal film, the transmission was confined to be a
beaming light from a single hole or directional emission from a single slit [2]. These findings
attracted a lot of interest because of their extensive potential applications such as optimized
probe for near-field microscopy [3], near-field optical data readout systems [4-5], near-field
imaging [6], and micro-aperture laser [7]. Furthermore, enhanced transmission and beaming
light were also reported from annular aperture with grooves surrounded [8-10]. Besides these
aperture-groove structures, beaming light from a nanoslit surrounded by metallic
heterostructures [11] and enhanced transmission from an aperture in a multilayered metallic
film [12] were reported very recently.

In our previous works [13-14], some new structures of layered metal-dielectric films were
studied numerically. By the modulation of dielectric film, transmission through the
subwavelength slit in layered films was enhanced and confined to beaming light. Actually,
enhanced transmission and beaming light are not the particular properties of pure metallic
structures, and they were also obtained through a subwavelength waveguide in photonic
crystal with modulated surface aspects [15-17]. These new findings extend the view of
transmission enhancement phenomena, and are very important to understand the underlying
mechanism of transmission enhancement.

B Ag O Dielectric E, <8y,

‘e

Fig. 1. Sketch maps of a slit in a metal film with periodic dielectric bars (a) on the input surface
and (b) on the output surface.

In this letter, we change the dielectric film in structures of Ref. [13-14] to periodic
dielectric bars with subwavelength width and analyze the transmission from subwavelength
slits in these new structures numerically by finite-difference time-domain (FDTD) method.
The sketch maps are shown in Fig. 1. In our simulation, we use metal Ag and its permittivity
is given by Drude model: ¢ (w) = 1 — [w,”/(&" + iwy)] with ©, = 1.346 x 10'° rad/s and y =
9.617 x 10" rad/s. The geometry of the metal film is fixed for comparison [2] and simplicity
as thickness ha; = 300 nm and slit width w = 40 nm. The slit is surrounded by 2N;; dielectric
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bars and the dielectric is supposed to be isotropic, and without dispersion and absorption.
Referred to the results in our works [13-14], N, is set to be 5. A TM polarized plane wave is
incident perpendicularly on the structures. The dielectric bars will be put on the input or
output surface of the metal film respectively to discuss their effects on the transmission
enhancement or directional light emission.

At first, we put dielectric bars on the input surface of the metal film and the output
surface is smooth [see Fig. 1(a)]. Under this condition, the transmission through the slit is
totally determined by the dielectric bars on the input surface. In Fig. 2, we show area-
normalized transmission spectra of three structures in metal films: a bare slit without any
structure on its surfaces, a slit with dielectric bars on the input surface, and a slit with periodic
grooves on the input surface. The parameters of the dielectric bars are period p,; = 500 nm,
height A, = 100 nm, width w,; = 40 nm, refractive index n = 2.0, and these parameters are set
to be default if not mentioned additionally. The slit-groove metal structure has +5 grooves
directly on the input surface with period of 500 nm, width of 40nm, and depth of 60 nm.

Normalized transmission

N\ =

400 500 600 700 800 900 1000
A (nm)
Fig. 2. Area-normalized transmission spectra of a bare slit (red line), a slit with dielectric bars
(green line) and a slit with periodic grooves (blue line). All three slits are in the same metal

film with thickness of 300 nm and slit width of 40 nm. The spectra are normalized by the
fraction of the surface occupied by the slit.

From Fig. 2, we can see clearly that the transmission through the subwavelength slit in
our structure is extraordinarily enhanced by the modulation of the periodic dielectric bars on
the input surface of the metal film. Compared with the enhancement caused by grooves
directly on the metal surface with same period and width, the peak enhancement by the
dielectric bars is stronger and the peak wavelength is a little longer. However, despite these
small differences, the properties of their transmission peaks are very similar, and we suppose
that the periodic dielectric bars play the same role in the transmission enhancement through
the subwavelength slit as what the periodic grooves do.

Although the resonant excitation of surface plasmons was used widely to explain the
mechanism of transmission enhancement, it doesn’t fit our result obtained from the structure
of metal slit and dielectric bars. As we know, the frequency of the surface plasmon is
determined by the permittivities of the metal and the dielectric at the interface. However, with
large difference of dielectric properties (n = 1 for air grooves and n = 2 for dielectric bars), the
resonant wavelengths of the slit with grooves and the slit with dielectric bars are very close
(see Fig. 2). This cannot be explained by the surface plasmons model. In this letter, the
CDEW (composite diffracted evanescent waves) model presented by Lezec and Thio [18] is
employed to explain the mechanism of transmission enhancement. In the CDEW model, the
transmission enhancement is due to the constructive interference of composite diffracted
evanescent waves generated by subwavelength features on the surface. Just as shown in Fig.
3, when light illuminates on the metal-dielectric structure, it will be diffracted into evanescent
waves by subwavelength-scaled dielectric bars. These composite evanescent waves propagate
to the slit and interfere with the light incident directly on the slit, leading to field enhancement
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when the interference is constructive at selected wavelength. Based on the CDEW model, the
stronger enhancement and the little longer peak wavelength can be explained easily. The
stronger enhancement is because the dielectric bars are transparent, which affect little on the
propagation of evanescent waves from far side. And the longer peak wavelength is caused by

the increase of the effective refractive index n,4 at the interface of the dielectric bars and the
metal film {see Eq. (4) in Ref. [18]}.

| |
I —

Fig. 3. The schematic diagram of transmission enhancement by CDEW model.

Furthermore, we simulate the influences of the characters of dielectric bars on the
transmission enhancement. In Fig. 4 are shown the normalized transmission and the
wavelength at peak (7,,,. and 4,,,,) as a function of 4. As hy; increases, T, increases first and
then trends to saturation. This is attributed to the exponential decay of the evanescent waves
along the direction perpendicular to the interface. The composite diffracted evanescent waves
have an imaginary component k. = i(k,> — ky°) along the direction perpendicular to the
interface [18]. A, increases a little with the increment of A, which is due to the increase of
the light path.

In Fig. 5 are shown T, and 4,,, as a function of n. As n increases, 7T, increases first
and then decreases. This is because that when n increases, the diffractive ability of the
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Fig. 4. (a) Normalized transmittance and (b) wavelength at peak as a function of the height of
dielectric bars. Other parameters of the dielectric bars are set as default.
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Fig. 5. (a) Normalized transmittance and (b) wavelength at peak as a function of the refractive
index of dielectric bars. Other parameters of the dielectric bars are set as default.
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dielectric bars increases, leading to more evanescent waves and stronger transmission
enhancement. However, larger n leads to stronger reflection at the dielectric surface, which
weakens the contribution to enhancement from dielectric bars far away from the slit. These
two contrary processes act together and lead to this variation finally. 4,,, increases as n
increases, which is due to the increase of the effective refractive index n.; at the interface.

1.54

0.5

Normalized transmission

0.0

400 500 600 700 800 900 1000
A (nm)
Fig. 6. Area-normalized transmission spectra of a bare slit (red line) and a slit with metal bars

on the input surface (blue line). The metal bars have a period of 500 nm, height of 40 nm and
width of 40 nm.

As a comparison, we change the dielectric bars to metal bars and simulate the
transmission. As shown in Fig. 6, the transmission through the slit with periodic metal bars is
also enhanced, but the enhancement is quite low. Actually, the evanescent waves can also be
generated by the diffraction of the metal bars, but the metal bars interrupt the propagation of
the evanescent waves and block the contributions to the enhancement from bars out of the first
pair. Thus the enhancement by metal bars is mostly due to the first pair of bars. The
enhancement factor of the transmission peak in Fig. 6 is 3.4, which is very similar to the result
obtained from slit with only one pair of grooves [19].

From results above, we know that the transmission through a subwavelength slit is
extraordinarily enhanced by the modulation of the periodic dielectric bars on the input
surface. As we already knew [14], the features on the output surface can modulate the
distribution of the light transmitted through the slit. We simulate the field distributions
through the slit with periodic dielectric bars on the output surface under different parameters,
which are shown in Fig. 7. The grooves [see Fig. 1(b)] on the input surface of the metal film
have period of 500 nm, width of 40 nm and depth of 60 nm. The incident light is 500 nm if
not mentioned especially. From the plots in Fig. 7, we can see clearly that the transmission
through the slit is confined to directional emission by the modulation of the dielectric bars on
the output surface. The plot of p,; = 400 nm presents a beaming light emission. Just same as
the effect of dielectric film with grooves [14], the dielectric bars diffract the evanescent waves
(which are generated by the diffraction of the subwavelength slit) into propagating waves and
these diffracted waves interferes with each other leading to the beaming light or directional
emission. However, it must be noticed that the dielectric bars are of very small width
compared with the incident wavelength and the bar period. Thus the variation of the dielectric
parameters will not affect the field distribution too much. As shown in Fig. 7, although the
incident wavelength, period, refractive index, and height of the dielectric bars vary greatly, the
distributions of output fields vary much slowly, especially compared with the results
modulated by the dielectric film [14].

In conclusion, we have analyzed numerically the properties of the transmission from a
single subwavelength slit in a metal film with periodic dielectric bars on the input and output
surface respectively by the FDTD method. Results show that the transmission is strongly
enhanced by the modulation of the dielectric bars on the input surface, and confined to
beaming light or directional emission by the modulation of the dielectric bars on the output
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X (um)

(D

Fig. 7. Patterns of light emitting from the slit under different incident wavelength and
parameters of dielectric bars. Other parameters are set as default.

surface. The dielectric bars play the same role as the periodic grooves directly on the surfaces.
We employ the CDEW model to explain the mechanism of the transmission enhancement and
the directional emission. The structure with periodic dielectric particles is very efficient to
obtain strong transmission enhancement. And we think our results will be very helpful for the
applications of subwavelength optical devices.
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Abstract: UV-light-induced absorption in LiNbO; highly doped with Mg
and Hf was investigated. Distinct decay behavior was attributed to the
different centers formed under UV illumination, 1.e., the shallow and
mntermediate deep centers for trapping holes. O formed near doped cation at
the niobium site was suggested to be the origin of the shallow center,
whereas that formed near cation vacancy was suggested to be the origin of
the intermediate deep center. The influence of the sample status (oxidized
or reduced) on the UV-light-induced absorption was demonstrated to
support our suggestion. Two different dark decay processes were associated
with relaxations of holes from the shallow centers to two unequivalent pp -

adjacent to the doped cations at niobium sites.
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1. Introduction

Lithium niobate (LiNbQO;, LN) crystals are extensively studied for their many important
applications [1, 2], e.g.. holographic volume storage, optical image and signal processing,
coherent optical amplification, and phase conjugation. In particular, holographic volume
storage has attracted increasing attention for the past three decades. One crucial problem with
this application is the volatility of stored information, because during readout carriers are
redistributed homogeneously, which leads to erasure of the recorded hologram. To solve this
problem, two-color recording was proposed and has been the focus of research in recent years
[3-10].

The two-color recording process in LN doubly doped with Fe and Mn was interpreted as a
two-center picture (Fe and Mn centers) [3]. For nominally pure near-stoichiometric LN, this
process was proved to be connected with the small polaron (the intermediate state) formed at
the antisite defect Nby; [4-7]. The small polaron together with the bipolaron (electrons
trapped at adjacent Nby; and Nby, sites) plays a key role in the realization of two-color
holography [5]. Recently, UV-light-induced absorption and two-color holography in LN
highly doped with damage-resistant impurity have been demonstrated by many researchers
[8-10]. Since Nby; has been eliminated completely in these samples, small polarons are
excluded as the origin of these phenomena. The researchers attributed it to the creation of
intermedhate shallow centers O (i.e., bound small polarons), where UV-excited holes were
trapped at O sites near cation vacancies charged negatively with respect to the lattice [8—10].
In particular, Tomita et al. [10] investigated the UV-light-induced two-color photorefractivity
in a near-stoichiometric LN doped with Mg and found that there are at least four types of
centers participated in this two-color photorefractive effect, but the exact nature of all these
centers was not given. For clarifying their essence, further investigations on LN samples with
other damage-resistant impurity are needed. Recently, Kokanyan et @l. found that doping of
tetravalent elements Hf can substantively suppress the optical damage of LN in the visible
spectral region [11]. Razzari et al. reported that the light-induced birefringence changes
observed for LN doped with 4 mol% of Hf are comparable to those found for 6 mol% Mg-
doped crystals and suggested that the so-called damage-resistant threshold was close to 4
mol% for Hf-doped LN [12]. Later, Li et al. gave the UV-visible and infrared absorption
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spectra of highly Hf-doped LN [13]. However, information is still lacking with regard to its
optical properties in the UV spectral region.

In this paper we investigated the UV-light-induced absorption (ULIA) in LN highly doped
with Mg and Hf, respectively and demonstrated their distinct decay behavior. The influence
of the sample status (oxidized or reduced) on the ULIA was also studied. Based on these
experimental results, the origin of the different centers participated in the ULIA process was
discussed in detail.

2. Experimental procedure

Samples used in this study were LN doped with 6.5, 7.8 mol% MgO and 4.0, 6.0 mol% HfO,,
respectively. The highly doped LN single crystals were grown along the z axis from the
congruent melt by using the Czochralski technique. The as-grown crystals were cut to
rectangular-shaped Y-oriented plates, which were then polished to optical grade. To get the
reduction state. the samples were treated in an argon atmosphere at 700°C for 6 h, and
oxidation required treatment in air at 800°C for 10 h. The labels and material parameters of
the samples are shown in Table 1.

Table 1. The labels and material parameters of the samples used in this study.

Sample Doping level Status Thickness (mm)
Hf40a 4.0 mol% HfO, As grown 2.86
Hf60a 6.0 mol% HfO, As grown 2.86
Mg65r 6.5 mol% MgO Reduced 2.86
Mg65a 6.5 mol% MgO As grown 2.86
Mg650 6.5 mol% MgO Oxidized 2.86
Mg78a 7.8 mol% MgO As grown 4.14

Mercury Lamp

C axis
Beam splitter
Detector

o

Diode laser
532nm

Detector

Fig. 1. Schematic of the experimental arrangement for the ULIA measurement. Details of
uniform illumination of strong green light were omitted. UV light intensity was 500 mW/em?,
intensity of strong green light was 200 mW/cm® |, and that of the probe-light (denoted as “P™)
ImW/em®. Another reference light (denoted as “R”) was used to reduce the drifts caused by
power fluctuation of the semiconductor laser.

Figure 1 shows a schematic experimental arrangement for the ULIA measurement. A 10
W mercury lamp was used as the incoherent UV light source. The spectrum of UV light was
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selected to peak at 365 nm by use of an appropriate optical filter. The UV light was loosely
focused by a lens and irradiated the sample for pump. We used an e-polarized 532 nm light
beam emitted from semiconductor laser as probe light, which impinged on the sample along
the direction orthogonal to the Y plane of the sample. The transmitted light was detected by a
photo-detector with a green filter placed in the front to block scattered 365 nm pump UV
light. Additionally, another strong incoherent 532 nm light beam was expanded for uniformly
illuminating the sample. Since the changes of the sample transmission during the ULIA
process are very small (sometimes less than 1%), it is necessary to avoid external influences
on the ULIA measurement. In our experiments the samples were kept at a steady temperature
(295 K), and the absorption induced by the temperature change could be eliminated. In
addition, another reference light was taken out from probe light before the sample. Also, the
ULIA coefficient changes were obtained from In[(Igi/Tro)/(Ipi1/Ipo)]/d, where Ip; (Ipg) and Ig;
(Iro) are measured intensities of transmission and reference beams with (without) UV light
illumination, respectively, and d is the sample’s thickness. This way we were able to reduce
as much as possible the drifts caused by power fluctuation of the semiconductor laser. In
order to test the reliability of our experiments, the absorption change of background was
measured ahead for a long time. The absorption change was found to be nearly zero all the
time, which indicates the external influences on the ULIA measurement had been effectively
suppressed.

10 d T T T i T " T Y T T d T
UV ON| | OFF ON| OFF ON|

Absorption (1/m)
F=Y

ol w B

-200 0 200 400 600 800 1000 1200 1400 1600
Time (s)

Fig. 2. Typical ULIA curve for highly Mg-doped LN crystal. ON- and OFF-states of UV
light are denoted as arrows in the figure.

3. Results and discussion

Figure 2 is the typical ULIA curve for a highly Mg-doped LN sample, which increases
rapidly at the beginning of UV light irradiation, achieves a saturation value for several
seconds, and decays partly to another stationary value in the dark after shutting down of UV
light. It should be noted that “in the dark™ mentioned here and later is only an approximation
in the experimental condition. In other words, the samples are not situated in absolute
darkness, even after the shutting down of UV light, because the green probe is still irradiating
it in order to monitor the absorption. In our experiment, however, the probe light with the
intensity of ImW/cm® is very weak and can be neglected. This suggestion is supported by
nearly the same results obtained when detecting the absorption from time to time instead of
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using a continuing probe. In Fig. 2, the most noticeable phenomenon is the nondecayed part
of the ULIA in the dark, which can, however, be erased completely by uniformly strong
illumination with 532 nm green light (as shown in Fig. 3). This result means that at least two
type of centers participated in the ULIA process: one is unstable and decays in the dark,
which corresponds to the shallow centers reported previously [8, 10]; the other can exist
stably in the dark but is sensitive to the green light, which seems in agreement with the
intermediate deep centers suggested by Tomita et a/. [10]. The terms “shallow”, “intermediate
deep”, and “deep” used here and later are concerning energy level for holes but not electrons.
The complete decay of the ULIA for LN highly doped with Mg was reported by Zhang ef al.
[8]. and the nondecayed part was not observed in their experiments. We think two factors
should account for this discrepancy. First, higher intensity adopted for the green probe light
may lead to the complete decay of the ULIA, because a relatively strong probe light can erase
undesignedly the nondecayed part mentioned above. Another factor is the oxidation status of
the sample used in experiments, which also influences the nondecayed part of the ULIA as
discussed in the following paragraphs.

12 T T T T '_M ﬁéo T ]
1Mr d Mg78a T

~ Experiment -
—— Fitting curve -
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O =2 MNwWhREOD~N OO _C;
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Fig. 3. Dark decay and green-light-induced decay curves for ULIA. ON-slate of strong
uniform illumination with 332-nm green light is denoted as arrows, black curves correspond to
the experimental data. and red curves are the fitting results of the dark decay curves with bi-
exponential form given by Eq. (2).
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Fig. 4. Experiment data for decayed and nondecaved parts of the ULIA in the dark.

Figure 4 gives the detailed experiment data for decayed and nondecayed parts of the
ULIA in the dark. First, we can see that the decayed part for Mg78a is obviously larger than
Mg65a, which indicates Mg78a has more shallow centers than Mg65a. Assuming O near
cation vacancy (- for LN) as the shallow center just like the previous suggestion [8-10], we

can deduce more y; exiting in Mg78a than Mg65a, which conflicts with the fact that the
amount of p; will decrease with Mg concentration above the so-called damage-resistant

threshold [14]. Therefore, the origin of shallow centers should be considered again. We know,
except i/, highly Mg-doped LN has another type of defect: Az . It is also charged

negatively with respect to the lattice and may trap the holes at O* sites. Considering more and
more Afg} appears with the increase of Mg concentration, assuming O formed near prq}; as

the shallow center becomes reasonable. In the view of defect structure, O" formed near 7 is
more stable than g’ because of the loss of Li cation, and it may be corresponding to the

intermediate deep center.

Another noticeable result comes from highly Hf-doped LN crystals. In contrast to highly
Mg-doped LN, the dark decay of the ULIA was absent for both Hf40a and Hf60a, and only
the similar green-light-induced decay curves can be observed. For simplicity, merely the
experimental data of Hf60a are given in Figs. 2 and 3. This absence of the dark decay means
the corresponding shallow centers have disappeared in these samples, which further weakens
the possibility of O" formed near y as the shallow center because of a large amount of -

existing in LN highly doped with tetravalent hafnium ions [13]. Also, Xu et al. [15]
investigated the ULIA for LN highly doped with trivalent In, and gave the much smaller dark
decay as compared with LN highly doped with bivalent Mg. These results indicate that the
shallow center is related to the valence of doped ions, which can be explained by our
assumption about the shallow center in the previous paragraph. In LN highly doped with Mg,
In, and Hf, the corresponding impurity defects formed at niobate sites arepfg?; . /n3;, and

Hf,» respectively. For their decreasing electrical negativity, the ability ofasg . /n7;, and
Hf, for trapping holes goes down in turn. Thus, as the shallow centers formed in LN highly
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doped with Mg, In, and Hf reduce accordingly, so does the dark decay caused by them. For
the extreme case of LN highly doped with Hf, the shallow centers responsible for the dark
decay disappear completely.

In order to confirm our suggestion about the intermediate deep centers, we studied the
influence of oxidation/reduction treatment on the ULIA of highly Mg-doped LN samples.
Obviously, the treatment has no obvious effect on the dark decay of the ULIA, but it
influences the nondecay part tremendously. From Fig. 3, we can see that the reduction
process leads to the sharp decrease of the nondecay part. Generally, LN may loss oxygen near
cation vacancies more easily than elsewhere during the reduction process. Thus, the amount
of O formed near Ve will reduce after the reduction treatment, which causes the decrease of

the intermediate deep centers.

Table 2. The fitting results of the dark decay curves in Fig. 3 using bi-exponential form given by Eq. (2).

Parameters = Mg65r Mg65a Mg650 Mg78a
Ag (m™) 0.95 2.74 483 2.65
Ay (m™) 4.05 2.99 2.08 2.30
7 (8) 9.33 9.05 8.61 9.40
Ay (m™) 3.60 414 458 573
T2 (s) 110 114 93.2 953

For the further analysis of shallow centers, we fitted the dark decay curves for all samples.
These curves cannot be well described by the functional form used by Zhang et al. [8]:

Ao

0

J1+2A0, 1 (1)

but can be perfectly fitted with bi-exponential form given as following:

Ao(t) =

Ao(t)y= A, + A exp(—t/ 1)+ 4, exp(—t/T,)

@
where Ay denotes the nondecay part of ULTA
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for the balance of electric charge bt it doest’t participate in the charge transfer process of
ULIA.

Torrita ef . [10] also approxgimated the datke-decay trend of the shallow -center grating to
an exponential form rather than from Eq. (1) and gave a good fit to their data. Table 2 lists
our fitting results. We can see the values of &g in this table have the similar trend as given in
Fig 4. In addition, all sarmples have nearly identical ¢ (about 9 53 and o Gabout 100 53, which
indicates the emistence of two different dark decay processes, 4 exp(—~/7) and
Ay exp(~ /7). Innatire, the dark decay can be interpreted as the relaxation process of holes
firorn shallow traps to deep ones in the darke However, the origin of deep traps in highly Ig-
doped LIY remnains disputable. These traps should be quite close to the conduction band but
have an ability to supply holes (be able to trap electrons). Some researchers [10, 16]
considered mpl- asthe hole-supplying deep center, but the direct evidence of s close to the
conduction band iz absent until now. The broad band centered near 0.9-1 eV (1.1-1.3 pur)
was always ohserved in reduced highly Me-doped LN and attributed to small polaron
absorption via polaron hopping at Nby, sites [17-19]. It indicates that ppzdt has an ability to
trap electrons (supply holes), can form a level relatively close to the conduction band, and
perhaps play the role of the hole-supplying deep centers in highly Me-doped LN, This
suggestion is also supported by the fact that holes have been found by ERR (Electron Spin
Eesonance) to be created together with electrons trapped at ap+ (forming Mb*y [20]. Now,

we tentatively take agit as the hole-supplying deep centers and give a description of one

possible mechanism for ULIA decay in highly Mg-doped LN UV light excites holes from
abit (the deep centers) tothe valence band. After their migration n the valence band, part of

thern are trapped by OF near v and peel, which leads to the creation of O and the
corresponding ULIA. After the UV light 15 shut down, the TILIA caused by stable O near p;

ithe mtermediate deep centers) remain nondecayed, but the holes at the relatively unstable ©
near pfg?, (the shallow centers) relax rapidly to neighborhood pplt the deep centers), which

carresponds to the dak decay process of TULIA Figure 5 shows a hypcethetical model for
ﬂ,@; surrcunded by two nearest Nbyy (51 nearest Nbyy m all because of the threefold

#71431 - $15.00 UED Received 26 Mlay 2006; revised 24 Tuly 2006; accepted 16 Augnst 2006
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symmetry of LN). Due to the presence of a spontaneous polarization Pyin LN, Nby, A and B
are not equivalent m the view of energy. In comparison with A, holes trapped near Asg2

relax to Nby, B more easily, which leads to two dark decay processes with different time
constants (1; and tp). Here, traps (for holes) at Nby, A, B and O™ near Mg, constitute a

three-level band scheme. Recently, Qiao ef al. [21] suggested another three-level model to
interpret their ULIA results for highly Zn-doped LN. However, using such a model to explain
our experimental results is difficult. Just as they emphasized, more experimental support and
further investigation are of great necessity to clarify the mechanism of the ULLIA for highly
doped LN.

4, Conclusion

The ULIA in LN highly doped with Mg and Hf was investigated, respectively. Both dark
decay and nondecay parts of ULIA were observed in highly Mg-doped LN, but only a
nondecay part was observed in Hf-doped LN. This distinct behavior was attributed to
different centers (the shallow centers and the intermediate deep centers for trapping holes)
formed under UV illumination. O near doped cation at the niochium site was suggested to be
the origin of the shallow center, which is responsible for the dark decay and disappears in Hf-
doped LN due to the very weak electrical negativity of gy, . Meanwhile, O" near cation

vacancy corresponds to the intermediate deep center for the nondecay part. The influence of
the sample status (oxidized or reduced) on the ULIA was demonstrated to support our
augment. In addition, two different dark decay processes were associated with relaxations of
holes from the shallow centers to two unequivalent Nby, adjacent to the doped cations at
niobium sites.

As a tetravalent ion, Hf has different photorefractive properties from Mg®*, Zn** | or In*".
At the time this paper was being written, Li et al. [22] found that Fe ions remain at Li sites in
Hf- and Fe-codoped LN crystals when the HfO, doping concentration goes above its
threshold value; as a result the photorefractive response rate and sensitivity are greatly
improved, and the saturation diffraction efficiency remains at a high value. The different
ULIA behavior of highly Mg- and Hf-doped LN observed in this work helped us to clarify the
nature of different centers formed under UV illumination and reveal the detailed kinetics of
the ULIA process involved in UV light-gating nondestructive two-color helography. For
highly Hf-doped LN, the absence of the dark decay process means that no shallow centers
form under UV illumination. Tt implies that the migration speed of holes in highly Hf-doped
LN should be faster than that in highly Mg-doped crystal, which is important for improving
the response speed of UV photorefractive holographic storage in LN.
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We study the dynamics of off-site excitation in an optically induced waveguide lattice. A single beam cen-
tered between two waveguides leads to an asymmetric beam profile as the nonlinearity reaches a threshold.
When two probe beams are launched in parallel into two nearby off-site locations, they form symmetric or
antisymmetric (twisted) soliton states, depending on their relative phase. A transition of intensity pattern
from on-site to off-site locations is also observed as the lattice is excited by a quasi-one-dimensional plane

wave. © 2006 Optical Society of America
OCIS codes: 190.4420, 230.3990.

The dynamics of soliton propagation in coupled opti-
cal waveguides, from two coupled waveguides such as
dual-core fiber couplers and directional couplers to
three coupled waveguides and multiwaveguide ar-
rays, has been studied extensively during the past
decades.’™ Much of the earlier theoretical work fo-
cused on energy switching and stability of solitons in
coupled waveguide structures. For instance, it has
been shown that, in a dual-core coupler, symmetry
breaking typically occurs such that a symmetric soli-
ton becomes unstable when its energy exceeds a
threshold value.??

More recently, closely spaced waveguide arrays
(lattices) have attracted considerable attention owing
to their strong link with photonic crystals as well as
to intriguing phenomena that arise from their collec-
tive wave propagation behavior.”® An example is the
formation of discrete solitons and bandgap struc-
tures, which have been demonstrated in a number of
experiments.”™® In particular, it has been shown
that, in fabricated waveguide lattices with strong
coupling, discrete solitons centered in the center of a
waveguide (on-site excitation) are stable, while those
centered in the middle between waveguides (off-site
excitation) are unstable.!*1% Closely related research
with optically induced photonic lattices'® has shown
that an even-mode soliton or an in-phase dipolelike
soliton is always unstable.'®

In this Letter we study experimentally off-site ex-
citation in a weakly coupled lattice created by optical
induction. When a Gaussian-like probe beam is
launched between two lattice sites, its energy
switches mainly to the two closest waveguide chan-
nels evenly, leading to a symmetric beam profile.
However, as the intensity of the probe beam exceeds
a threshold value, the probe beam evolves into an
asymmetric beam profile, akin to that which results
from symmetry breaking in a double-well poten‘cial.Z’3
Should the probe beam experience no or only weak
nonlinearity, such symmetry breaking in the beam
profile would not occur, regardless of the increase in

0146-9592/06/040492-3/$15.00

its intensity. When two probe beams are launched in
parallel into two off-site locations, they form symmet-
ric or antisymmetric (dipolelike twisted'>!"18) soliton
states, depending on their relative phase. A transi-
tion of the intensity pattern from on-site to off-site lo-
cations is also observed as the lattice is excited by a
quasi-one-dimensional plane wave, which may be re-
lated to excitation of symmetric (first band) and an-
tisymmetric (second band) Bloch states in the
lattices. %120

The experimental setup for our study is similar to
that used for creation of spatial soliton pixels.’® A
partially spatially incoherent beam (488 nm) is gen-
erated by use of a rotating diffuser. A biased photore-
fractive crystal (SBN:60, 6 mm X8 mm X5 mm) is
employed to provide noninstantaneous saturable self-
focusing nonlinearity. To generate a two-dimensional
waveguide lattice we use an amplitude mask to spa-
tially modulate the otherwise uniform beam after the
diffuser. The mask is then imaged onto the input face
of the crystal, thus creating a pixellike input inten-
sity pattern. This lattice beam is ordinarily polarized,
thus it induces a nearly linear waveguide array,
which remains invariant during propagation.’~'% An
extraordinarily polarized coherent beam (either 488
or 632.8 nm) is used as a probe beam propagating col-
linearly with the lattice. When required, the probe
beam is split by a Mach—Zehnder interferometer to
create two beams, which we can make either mutu-
ally coherent with a controlled phase relation or mu-
tually incoherent by adjusting a piezoelectric trans-
ducer mirror installed in the interferometer.

First, we launch a single Gaussian beam (488 nm)
as a probe into the middle of two lattice sites located
in the vertical direction (illustrated as P; in Fig. 1).
The choice of vertical rather than horizontal direction
is made to prevent possible asymmetry of the beam
profile induced by soliton self-bending. When the
e-polarized probe beam propagates collinearly with
the lattice through the crystal, we observe a transi-
tion from a symmetric to an asymmetric beam profile

© 2006 Optical Society of America
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Fig. 1. TIllustration of input locations of probe beams in a
two-dimensional waveguide lattice.

Fig. 2. (Color online) Off-site probing with a single Gauss-
ian beam at 488 (top) and 632.8 (bottom) nm. a—h, Output
intensity patterns of the probe beam at intensities (normal-
ized to the lattice intensity) of a, 0.1; b, 0.2; ¢, 0.4; d, 0.5; e,
0.2; f, 0.4; g, 1.0; h, 2.0.

as the intensity of the probe beam is increased gradu-
ally while all other experimental conditions remain
unchanged. Typical experimental results are pre-
sented in Fig. 2 (top), which were obtained with a lat-
tice of 35 um spacing (as shown at the left in Fig. 1).
When the intensity of the probe beam is low, the en-
ergy of the probe tunnels evenly into two waveguides
(Figs. 2a—2c). However, above a threshold value of in-
put intensity, the output intensity pattern becomes
asymmetric (Fig. 2d). The bifurcation from symmet-
ric to asymmetric output is also clearly visible in the
vertical beam profile illustrated at the left in each fig-
ure, which we obtained here by changing only the
beam intensity without offsetting the beam position.
To demonstrate that such a transition was induced
by nonlinearity, all experimental conditions were
kept unchanged, except that the 488 nm probe was
replaced by a 632.8 nm probe. The beam at 632.8 nm
experiences much weaker nonlinearity than does the
488 nm beam, simply because the former is at a
much less photosensitive wavelength for our crystal.
As expected, such a dynamic transition did not occur
with the 632.8 nm probe, regardless of the increase
in its intensity. In fact, even if the intensity of the
probe beam was increased to twice that of the lattice
beam, the probe profile remained symmetric, as
shown in Fig. 2h.

Next, we split the Gaussian probe beam into two
mutually incoherent beams with a Mach—Zehnder in-
terferometer in which one of the mirrors was driven
by a piezoelectric transducer at a frequency much
faster than the crystal can respond to. When only one
of the beams exiting from the interferometer was
sent to an off-site position, we adjusted the beam’s in-
tensity such that a single beam alone did not lead to
an asymmetric beam profile. Adding the other beam
at the same location resulted in an overall asymmet-
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ric beam profile. When the two beams were sent into
two separate off-site locations (P; and P, in Fig. 1)
rather than overlapped, we effectively had a three-
well potential for the probe beams in the weak-
coupling region. The energy of each probe beam alone
tunneled into two adjacent waveguides evenly, as
shown in Figs. 3a and 3b. We then opened up both
beams and recorded the intensity pattern both imme-
diately and after a new steady state had been
reached. From Figs. 3c and 3d, one can see clearly
that more energy from the probe beams moved to the
central site owing to the noninstantaneous nonlin-
earity experienced by the probe beams. In fact, when
we blocked one beam and quickly recorded the inten-
sity pattern of the other beam, we noted that each
beam profile became slightly asymmetric at this new
steady state, with the preferred direction of energy
tunneling toward the central site. In this case, the
asymmetry of the top beam was similar to that
shown in Fig. 2d, but the beam profile of the bottom
beam had opposite asymmetry simply because the ef-
fective waveguide in the central site was stronger.
Without the pairing beam, each beam alone will
evolve into an asymmetric beam profile such as that
in Fig. 2d once its intensity is increased above a
threshold value. (The corresponding symmetry-
breaking numerical simulation for off-site excitation
of a single beam is shown at the right in Fig. 3; the
waveguides are centered at x=-9,-3,3,9, etc.)
Naturally, one wonders what would happen if the
two probe beams were made mutually coherent with
a different phase relation. By controlling the dc volt-
age applied to the piezoelectric transducer mirror, we
made the two beams exiting the interferometer ei-
ther in phase or out of phase with each other. Keep-
ing all other experimental conditions unchanged, we
obtained quite different steady states between in-
phase and out-of-phase excitation, as illustrated in
Fig. 4. In the in-phase case, most of the energy flows
into the central lattice site (Fig. 4a), whereas in the
out-of-phase case the energy flows mainly into the
two lateral sites in the vertical direction (Fig. 4b). Ra-
diation to other nearby lattice sites owing to wave-
guide coupling is also visible. Intuitively, one may
consider these new steady states to be a result of con-
structive and destructive interference, but they cor-
respond to symmetric (in-phase) and antisymmetric

Fig. 3. (Color online) Left, off-site probing with two mutu-
ally incoherent beams. a, b, Output of a beam alone; c, d,
output of two combined beams at 1 and 30 s, respectively.
Right, numerical simulation of a single probe beam
launched initially in the middle of two lattice sites located
at x=-3.0 and x=3.0 for 250 spatial steps of evolution (cor-
responding to ~50 ¢cm propagation distance).
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Fig. 4. (Color online) Off-site probing with two mutually
coherent beams. Shown are the combined output beam pro-
file (left) and the intensity pattern (middle) for, a, in-phase
and, b, out-of-phase excitation. Right, simulation of dy-
namic evolution of two in-phase and out-of-phase beams
launched at two off-site locations (x=-1.5 and x=1.5).

Fig. 5. (Color online) Probing with a strlpe beam: a, com-
bined input of lattice and stripe beams; b—d, output of the
stripe beam at normalized intensities of b, 0.2 and 0.8 after
¢, 1 sand,d, 30s.

(twisted) soliton states as defined for lattice
solitons.”'® Here the solitons are excited in an effec-
tively three-well potential as embedded in a weakly
coupled waveguide lattice. In fact, we theoretically
investigated this issue, using a continuum model
based on saturable photorefractive nonlinearity with
an effective three-well potential. We found that in
this setting any state with multiple in-phase beams
(all centered on site) is always unstable. However,
both symmetric states (corresponding to a single
beam on site) and antisymmetric states (correspond-
ing to two out-of-phase beams on two different sites)
can be linearly stable. Typical results from simula-
tions are included in Fig. 4 (right), where the top fig-
ure shows the evolution of two Gaussian beams
launched at x=-1.5 and x=1.5 (while the three
waveguides are centered at x=-3,0,3). It can be seen
that the two beams (although they are excited at off-
site locations) evolve quickly into either a single
beam (for the in-phase case) at the central site or two
beams (for the out-of-phase case) at the two lateral
sites.

As mentioned above, for a single beam excitation in
waveguide lattices, the odd solitons (centered on a
lattice site) are stable but the even ones (centered be-
tween two lattice sites) are not.'!*15 Symmetrg
breaklng in double-well potentials is well known,?
but in a fully periodic potential it may no longer be
possible. Instead, an even-symmetry mode is indeed
unstable, but it can be transformed into an odd-
symmetr¥ mode through an asymmetric beam
profile.'*! Such a transition is what we observed in
our experiment (Fig. 2). In addition, twisted- (or
dipole-) mode solitons (centered between two lattice
sites but with an out-of-phase relation) were indeed
predicted and found to be stable.'*!"® Here we ob-
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served such antisymmetric solitons by off-site excita-
tion of two probe beams simultaneously.

Finally, we launched a stripe beam (akin to a
quasi-1D plane wave) to cover many lattice sites in
the vertical directioin (shown in Fig. 5a and as P3 in
Fig. 1). When the intensity of the probe beam was in-
creased, we observed a shifting of its intensity peaks
from on-site (Figs. 5b and 5c¢) to off-site (Fig. 5d) lo-
cations as the beam experienced higher nonlinear
self-action and bending. This may be related
to excitation of different Bloch states in the
lattices.'®
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Abstract

The ultraviolet photorefractive effect of Mg-doped near-stoichiometric LiNbOj crystals prepared by vapor transport equilibration
(VTE) technique was studied at 351 nm. It was found in the near-stoichiometric LiNbO; crystals that the ultraviolet photorefractive
effect could be enhanced greatly with the increase of Mg concentration. Based on the activation energy of dark decay of the photore-
fractive grating, possible centers responsible for the ultraviolet photorefractive effect were also discussed.

© 2006 Elsevier B.V. All rights reserved.

Keywords.: Photorefractive; Lithium niobate; Stoichiometric; Ultraviolet

1. Introduction

Lithium niobate (LiNbQO3) is one of the most important
photorefractive materials due to its many important appli-
cations, e.g., holographic volume storage, optical image
and signal processing, coherent optical amplification, and
phase-conjugation [1,2]. However, most of these applica-
tions have been studied in the visible. With the development
of the ultraviolet light source, it is possible and necessary to
study the photorefractive effect of LiNbOj; in the ultravio-
let. In 2000, Xu et al. found an enhancement of photorefrac-
tive effect in highly Mg-doped congruent LiNbO; in the
ultraviolet [3]. Afterwards, Qiao et al. reported highly Zn
and In doped congruent LiNbOj; crystals to have excellent
ultraviolet photorefractive characteristics [4]. These materi-
als were believed to be good materials with optical damage
resistance since 1980 [5-10] and the results of [3,4] extended
the potential applications of them greatly. Nevertheless,
these abnormal phenomena are still not fully understood.

* Corresponding author. Tel.: +86 2266229028; fax: +86 2266229310.
E-mail addresses: jjxu@nankai.edu.cn, zhudengsong@mail.nankai.
edu.cn (J. Xu).

0030-4018/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.optcom.2006.05.048
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In this paper, we further studied the ultraviolet photorefrac-
tive effect in Mg-doped near-stoichiometric LINbO; crystals
and discussed possible centers responsible for the ultraviolet
photorefractive effect based on the activation energy of dark
decay of the photorefractive grating.

2. Experiment

Three LiNbOj; crystals doped with 0.2, 1.0, and 2.0 mol%
Mg, hereafter denoted SMg0.2, SMgl.0, and SMg2.0,
respectively, were grown by the conventional Czochraski
method from the congruent melt. The positive direction of
the c-axis was determined by the pyroelectric effect [11].
The vapor transport equilibration (VTE) technique [12,13]
was introduced to increase the [Li]/[Nb] ratio of the crystals
and due to the limitation of VTE technique, the thickness of
the samples was less than 1 mm. The measured [Li]/[Nb]
ratios of three samples by the Raman linewidth of the E
mode (152 cm™') [14] are listed in Table 1. From the results
of optical damage testing at 488 nm, it was found that the
Mg concentration was above threshold in SMg2.0.

Experiments were performed with an Ar" laser working
at 351 nm. A schematic representation of the experimental
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Table 1

Materials and photorefractive parameters of the samples at 351 nm

Samples SMg0.2 SMgl.0 SMg2.0

Thickness along the 0.70 0.70 0.75
b-axis (mm)

Mg concentration (mol%) 0.2 1.0 2.0

[Li,O] (mol%) 50.18 50.04 49.55

Two-wave coupling 3.26 7.74 11.87
gain® I' (cm ™)

Diffraction efficiency® 1 (%)  0.52 1.37 3.1

Refraction index 1.08 1.76 2.48
change® An (x1079)

Photoconductivity 0.13 0.32 7.80
sensitivity® S (cm/J)

Response time® 7, (s) 27.11 13.20 0.69

Effective carrier density 0.55 0.98 1.37
Negr (x10'¢ ecm ™)

Activation energy Ea (eV) 0.29+0.04 0.16+0.02 0.13+0.02

% The intensity ratio between the signal and reference beam Is:Ig was
1:11 and the total incident light intensity I + Is was 191 mW/cm?. The
grating period A was 0.54 pm.

® Two equal recording intensity Is = Ix = 57 mW/cm? and the grating
period A was 0.54 pm.

¢ The response time constants were measured under the ultraviolet
illumination of 57 mW/cm®.

arrangement is shown in Fig. 1. The holographic gratings
were written by the signal beam S and reference beam R
with extraordinary polarization. The grating wave vector
was kept parallel to the c-axis of crystal. The formation
and decay process of the gratings were monitored by a
weak He—Ne laser beam (632.8 nm) at the Bragg angle.
The diffraction efficiency # of the holographic grating was
measured by simply blocking the reference beam after sat-
uration and # was defined as

14

= , 1
T W
where 14 and I, were the diffracted and the transmitted light

intensity of the signal beam, respectively. The two-wave
coupling gain I" was defined as

I = 1 In (ISI}{>,
VA

Ar*laser 351 nm

(2)

uter |

:

c-axis

He-Ne laser 632.8 nm

Fig. 1. Experimental set-up for ultraviolet photorefractive effect. M,
mirror; BS, beam splitter; D1-D4, detectors; and 260;,, the intersection
angle between the signal and reference beams in crystal.
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where d was the thickness of the sample and g,/ and I,
Ir were the transmitted intensities of the signal beam S and
reference beam R with and without coupling, respectively.

3. Results

The two-wave coupling experiment was performed with
the setup as shown in Fig. 1. The total incident light inten-
sity 1 (I = Is + Ir) was 191 mW/cm?, the ratio of intensity
between the signal and reference beam Ig5:/g was 1:11. The
grating period was 0.54 pm corresponding to the intersec-
tion angle of signal and reference beam in air. The measur-
ing coupling gain coefficient I' was 11.78 cm ™' in SMg2.0,
7.74 cm~ ! in SMgl.0, and 3.26 cm ! in SMg0.2, which are
listed in Table 1. In the experimental process, for all the
samples, the signal beam S propagates at an incline with
respect to the —c-axis direction. It was found that the inten-
sity of signal beam S increased with time and saturated to a
certain value when the reference beam R was switched on.
Accordingly, the energy was unidirectionally transferred
from —+c¢ to —c-axis direction, as also reported in Zn and
In doped LiNbOj; [4,15]. It could be reasonably concluded
that the diffusion was the dominant mechanism and the
dominant charge carriers were electrons during the ultravi-
olet photorefractive processes in the three samples [2].

The diffraction efficiency 1 was measured according to
Eq. (1). When measuring, we set signal and reference
beams of equal light intensity (Is = Iz = 57 mW/cm?) were
used in order to get a large optical modulation. The ultra-
violet photorefractive characteristics of the three samples
are listed in Table 1. The refractive index change An was
calculated from the diffraction efficiency, according to [16]

.2 nAnd
- el 3
=sm (icos Om>’ 3)

where 20;, was the intersection angle between the signal
and reference beams in crystal, 4 was the wavelength of
the probe beam in vacuum. The response time constant
7, was defined as the time when the diffraction efficiency de-
cays to 1/e of its initial value with the reference beam R to
erase the grating. The photorefractive sensitivity S was de-
fined as

1 dyn
S=1d ar @
where I (I = I + Ir) was the total incident intensity. From
the experimental results in Table 1, it can be seen that the
ultraviolet photorefractive effect was enhanced greatly with
the increase of Mg concentration in our samples. The sam-
ple SMg2.0 showed the strongest photorefractive effect,
whose refraction index change An, the response time 7.,
the coupling gain I' and the photorefractive sensitivity S
were 2.48 x 107>, 0.69 s, 11.87 cm™ !, and 7.80 cm/J, respec-
tively. The results indicated that SMg2.0 was a better
photorefractive material and more suitable for the dynamic
and real-time holographic application than the other two
samples in the ultraviolet.

|t:07
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Because the diffusion was the dominant mechanism, the
photorefractive effect was mainly affected by the effective
charge density [3,4]. The relation between the two-wave
coupling gain I and the beam-crossing angle was described
by [17].

r— Asin chs 20i, , (5)
(1 4+ B7%sin” ) cos 0,

where 20 and 26;, were the intersection angle between the
signal and reference beams in air and in crystal, respectively,
A = yeal(8n°n’kgT/e)?) and B= (exl/47t)(Neﬁ»/880kBT)1/2,
where ¢ was electron-hole competition factor, » was the
refractive index, e was the elementary charge and Ny was
the effective charge density. The dependence of two-wave
coupling gain I' on the grating period A (A = /2sin0)
was measured and is shown in Fig. 2. By fitting the results
with Eq. (5), we could obtain the effective carrier density
N The fitting curves are also shown in Fig. 2. The fitting
results yielded the Ny was 0.55 x 10'® cm ™ for the sample
SMg0.2, 0.98 x 10'® cm ™~ for SMgl1.0, and 1.37 x 10'® cm ™
for SMg2.0. The results indicated a noticeable increase of
N with increase of Mg-doped concentration, which caused
a greater ultraviolet photorefractive effect in SMg2.0. This
conclusion is consistent with the previous result in Mg,
Zn, and In doped congruent LiNbO; [3,4].

In order to clarify the possible photorefractive centers
responsible for the ultraviolet photorefractive effect, the
activation energy was calculated from measurements of
the temperature dependence of the dark decay time. The
dark decay time constant 7 of the grating was defined as
the time when An decayed to 1/e of its initial value in the
darkness. The crystal temperature was set from 23 °C to
140 °C. The temperature dependence of t obeyed the
Arrhenius law:

(6)

12

-}

GainT (cm-1)

£y

Grating period A (pm)

Fig. 2. Grating period A dependence of gain I'. The intensity ratio
between the signal and reference beam I5:/g was 1:11 and the total incident
light intensity Ig + Is was 191 mW/cm?2 Symbols: measured results; solid
lines: theoretically fitting curves.
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Fig. 3. Arrhenius plots of the dark decay time constant for SMg0.2,
SMgl.0 and SMg2.0, respectively. The fitting activation energies were
0.29+0.04 eV, 0.16 £ 0.02 eV, and 0.13 + 0.02 eV.

where T was the absolute temperature of the crystal, kg was
the Boltzmann constant, and E4 was the activation energy.
Fig. 3 shows the curves of 7 versus 7 for SMg0.2, SMgl.0,
and SMg2.0. The solid lines are the least-square fits of our
experimental results by Eq. (6). The fitting results yielded
the activation energy, FE, being 0.29 +0.04eV for
SMg0.2, 0.16 £ 0.02 eV for SMgl1.0, and 0.13ev + 0.02 eV
for SMg2.0, which are listed in Table 1. The results indi-
cated that E5 may correspond to shallow photorefractive
centers due to its small value.

4. Discussion

Up to now, whether the dominant carrier in LiNbOj3 in
ultraviolet is hole or electron is still under dispute [4,15,18-
20]. In our samples, the energy was unidirectionally trans-
ferred from +c to —c-axis direction, and a large coupling
gain coefficient I" was observed. This indicated that diffu-
sion was the dominant mechanism and the dominant
charge carriers were electrons. Shallow photorefractive
centers in LiNbO3; have been studied extensively because
of recent interests in non-volatile two-color recording.

In light of the Li-site vacancy model [21], Mg ions would
replace the antisite Nb (Nby;) and force them to their ori-
ginal sites. For SMg0.2, because of the low concentration
of Mg, in term of Ref. [22], it was thought that Mg ions
would primarily replace the antisite Nb (Nby;) and force
them to their original sites, Fe ions remain at Li sites. As
the concentration of Nby; antisite defects decreased greatly;
electrons would be trapped by Nbyy, and formed the small
free polaron Nbyy, [23]. The NbY; could act as the shallow
photorefractive center and the activation energy of Nbﬁ{)
was 0.29 4+ 0.04 eV according to the Arrhenius plot. This
value was close to the thermal activation energy of
0.24 eV and 0.29 eV for small free polaron Nby; in reduced
Mg doped and Zn doped LiNbO;, respectively [24]. Sun-
arno et al. also reported that in In doped congruent
LiNbOj; there was small free polaron Nbl; which was

65



D. Zhu et al. | Optics Communications 266 (2006) 582-585

responsible for the observed monoexponential decay
behavior [25].

Ref. [26] reported that Fe ions also changed their sites
and formed F ef{b/ 3~ with the concentration of Nby ; decreas-
ing. For SMgl.0 and SMg2.0, it was thought there was
Fef{b/ " defect as the shallow photorefractive center and
its average activation energy was about 0.15+ 0.02 eV
according to the Arrhenius plots. Winnacker et al. reported
that Fef\fb/ 3~ serves as a hole donor whose energy level is
located at 0.11 eV below the conduction band [27].

Our results showed that the shallow photorefractive cen-
ter with an increase of concentration of Mg would change
from Nby;, to Feifb/ ¥ It should be noted that in Ref. [22]
Fef{b/ 3" defect could be formed at above threshold concen-
tration. In Ref. [26], however, it could be formed under
threshold concentration. From what had been discussed
above, it was thought that Feifb/ *~ was not formed in
SMg0.2, whereas it was formed in SMgl.0 where concen-
trations of Mg were both under threshold concentration.

5. Conclusion

In summary, we have studied the ultraviolet photore-
fractive effect of Mg-doped near-stoichiometric LiNbO;
crystals produced by the Czochralski method and VTE
treatment. We found that the ultraviolet photorefractive
effect could be enhanced greatly with the increase of Mg
concentration in the near-stoichiometric LiNbOs;. The
analysis of the activation energy indicated that under ultra-
violet light, the shallow photorefractive center with an
increase of concentration of Mg would change from
Nbi; to Fel* ™.
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Abstract

By use of the highly dispersive phase coupling effect in a photorefractive wave mixing process, we have observed ultraslow propaga-
tion of a single Gaussian light pulse with a group velocity ~0.5 m/s in a photorefractive Bi;»SiO,, crystal at room temperature. The ultra-
slow Gaussian pulse is amplified due to an intensity coupling effect but keeping its Gaussian profile with high fidelity. The group velocity
of the Gaussian pulse can be controlled to a large extent. This technique is useful for controllable optical delay lines.

© 2006 Elsevier B.V. All rights reserved.

Keywords.: Ultraslow; Phase coupling; Photorefractive; Dispersive; Group velocity

1. Introduction

Due to an overwhelming desire for a fundamental under-
standing of physical laws governing light propagation and
the promise of many applications, such as controllable
optical delay lines, optical memories and information
processing, great endeavors have been made to develop
techniques to manipulate light propagation. Both superlu-
minal [1,2] and subluminal [2-16] light propagation have
been demonstrated via various techniques. A breakthrough
on ultraslow light was accomplished first by Hau et al. [4]
in an ultracold sodium atomic gas by use of the electromag-
netically induced transparency (EIT) effect. Later ultraslow
light propagation and even completely stopped light pulses
were demonstrated in the Bose-Einstein condensates [4,5],
in the atomic vapors [6,7] and in Pr-doped Y,SiOs crystals

* Corresponding author. Tel./fax: +86 22 23499944,
E-mail address: zhanggq@nankai.edu.cn (G. Zhang).

0030-4018/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
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[8] using the EIT effect. However, complicated and rigor-
ous experimental requirements, such as single-frequency
lasers with a bandwidth ~ MHz or less and an extremely
narrow operating spectral range put serious limitations
onto such techniques for practical applications. Techniques
based on mechanisms other than the EIT effect were pro-
posed recently [2,9-13]. Among them the most representa-
tive ones are the ultraslow light propagation in solids at
room temperature via the coherent population oscillation
effect [2,10] and that via the temporal evolution of the
photorefractive (PR) grating buildup in a degenerate two-
wave mixing process [11,12]. The system requirements of
these techniques are relatively simple as compared with
those based on the EIT effect. On the other hand, the out-
put signal pulse usually experiences serious distortion
because the frequency components of the pulse are not
uniformly delayed and attenuated/amplified. Podivilov
et al. [11] showed that the delayed Gaussian pulse dura-
tions followed linearly the input pulse durations when the
input Gaussian pulse durations were much longer than
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the response time of the PR degenerate two-wave mixing
process. Deng et al. [12] tried to eliminate the distortion
of the ultraslow light pulse by use of the multiple pump
beams, in which each pump beam was tuned to the different
frequency component of the signal pulse so that every fre-
quency component of the signal pulse was delayed and
amplified with the same amount by the corresponding
pump beam. Recently, Odoulov et al. [13] delayed Gauss-
ian pulses without severe broadening effect by using pump
pulses of identical temporal profile as that of signal pulses.
The pulses were delayed through a degenerate PR two-
wave mixing with a negligible intensity coupling effect
using electron-hole competition in Sn,P,Ss and CdTe
crystals.

In the previous papers [14,15], we proposed a simple
technique to produce steady-state ultraslow light based
on a dispersive phase coupling (PHC) effect. As an exam-
ple, we demonstrated an amplified ultraslow light with a
group velocity ¥, ~ 0.05m/s by using the highly disper-
sive PR-PHC effect in a Bi;,SiO,, (BSO) crystal [16]. This
technique offers a large controllability over the group
velocity and a broad effective operating spectral range.
Furthermore, a conventional laser can be used to achieve
such PHC-induced ultraslow lights. We achieved the ultra-
slow light in the quasi-continuous-wave (quasi-cw) regime,
therefore, a sinusoidally modulated probe light was used
in the experiments. Nevertheless, it would be more inter-
esting to slow down a single pulse in view of practical
applications. In this paper, we have demonstrated the
PHC-induced ultraslow single Gaussian pulse with high
profile fidelity in a PR BSO crystal even with a cw pump
beam. The factors that may induce the pulse profile distor-
tion have been discussed. We have also discussed the dif-
ferences in the propagation properties of the ultraslow
lights between the quasi-cw and the pulse cases.

2. Experimental setup

Two mutually coherent and vertically polarized 532-nm
beams, a strong cw pump beam and a weak signal Gauss-
ian pulse, were overlapped and coupled in a BSO crystal
(5.2x5.7%x5.7mm), as shown in Fig. 1. The pump was
shifted in angular frequency by @ using a sawtooth-volt-

| transmitted signal pulse

DC voltage

signal pulse

o
Vil
y |

Fig. 1. Schematic diagram of the experimental setup.
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age-driving piezo-mirror, and then expanded and colli-
mated in order to illuminate the BSO crystal uniformly
[17]. The signal Gaussian pulse was generated via an elec-
tro-optic modulator and its duration 7 (defined as the time
constant of the Gaussian pulse) was controlled by a per-
sonal computer. Both the signal pulse and the pump prop-
agated approximately along the 110-direction of the BSO
crystal (along the 5.7-mm side). The time-delay At experi-
enced by the transmitted signal pulse was measured by
monitoring and comparing the temporal trace of the trans-
mitted signal pulse and that of a reference pulse which was
a portion of the incident Gaussian pulse reflected by a
beam splitter before the entrance facet of the BSO crystal.
A direct current (DC) voltage was applied along the 001-
direction of the BSO crystal.

3. Results and discussion

Fig. 2 shows typical temporal traces of the transmitted
signal pulse (the solid curves) and the reference pulse (the
dashed curves) with the pump off (a) and on (b), respec-
tively. In the experiments, we used a pump intensity
I,=34 mW/cm?, an input intensity ratio of the pump to
the peak of the signal pulse y = I,/Iimax = 1400, an external
DC electric field E=8kV/cm, a grating spacing A=
21.3 um, a pulse duration 7= 34 ms and a frequency-shift
of the pump Q/2rn = 18 Hz, respectively. It is evident that
the transmitted signal pulse is substantially delayed (see
Fig. 2(b)) when the cw pump is on because of the highly
dispersive PR-PHC effect. The time-delay A¢ was measured
to be ~11.2ms, corresponding to a ¥, ~0.5m/s. It was
found that, although the delayed signal pulse was amplified
because of an energy transfer from the pump via the PR
intensity coupling effect, it was of high Gaussian profile
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Fig. 2. Typical temporal traces of the reference pulses (dashed curves) and
the transmitted signal pulses (solid curves) with the pump off (a) and on
(b), respectively.
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fidelity with only a slight ripple and broadening effect (see
Fig. 2(b)). The slight profile ripple may come from an
imperfect profile of the driving sawtooth voltage and the
environmental vibration. The profile broadening effect of
the delayed pulse originates mainly from the high order dis-
persion of the PHC effect and the broad frequency band-
width of the Gaussian pulse itself. It is substantially
suppressed when the frequency bandwidth of the input
Gaussian pulse is much narrower than the bandwidth of
the frequency window of the PHC effect with a positive dis-
persion slope. The bandwidth of the frequency window
depends on the response rate of the PHC process. The fas-
ter the response rate of the PR-PHC process, the broader
the bandwidth of the frequency window of the PR-PHC
effect with a positive dispersion slope. Therefore, the profile
broadening effect can be eliminated by employing a pulse
with a long pulse duration 7 or a PR material with a fast
response rate, as will be discussed in more detail in the fol-
lowing. In addition, the beam amplification effect and the
memory effect of the PR gratings may also contribute to
the pulse broadening partially. Note that the high fidelity
of the ultraslow pulse was achieved with a cw pump beam,
in contrast to that in Ref. [13] in which a pump pulse with
an identical temporal profile as that of the signal pulse was
used in order to suppress the broadening effect of the
delayed pulse.

As is the quasi-cw case [14-16], the group velocity of a
single pulse is also controllable to quite a large extent
through adjusting experimental parameters, such as I,, E
and 7. Fig. 3(a) shows the dispersion curves of V, for the
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Fig. 3. Measured dispersion curves of V, for a single Gaussian pulse at
different conditions. (a) shows the results for £ =8 kV/cm with I, to be
34 mW/cm? (squares), 68 mW/cm? (circles) and 152 mW/cm? (triangles),
respectively. (b) is the results for /, = 152 mW/cm? with E set at 8 kV/cm
(squares), 6 kV/cm (circles) and 4 kV/cm (triangles), respectively. Other
parameters y, A and T for both cases were set to be 1400, 21.3 pm and
34 ms, respectively. The curves are guided by the experimental data.
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signal pulse at different I, with E=8kV/cm, y= 1400,
A=21.3 um and T = 34 ms, respectively. It is clearly seen
that ultraslow pulse propagation is limited within a narrow
effective Q-window 4Q, where the PHC coefficient disper-
sion curve has a steep positive slope [14,15]. It is the nar-
rowness of this spectral window AQ that results partially
in the profile broadening and distortion of the delayed
pulse in the case of a short pulse, as discussed in the previ-
ous paragraph. Also, a lower I, usually leads to a smaller
achievable minimal V, and a narrower AQ because of the
proportionality of the response rate of the PHC to I,
[15]. Nevertheless, it is worthy of mention that it is possible
to have a smaller I, at a higher 7, in the short pulse case,
where the coupling between the signal pulse and the pump
is more effective at a higher intensity because of a larger
ratio of pulse duration T to the response time constant t
of the PHC process [15]. The PHC between the signal pulse
and the pump was found to be more effective at a higher E.
This results in a lower V, at a higher E, as shown in
Fig. 3(b). As expected, 4Q is broader at a lower E because
of a faster response rate due to a shorter drift length of
photoexcited electrons.

The pulse duration T also has an effect on V, because of
the slow response rate of the PHC process. The PHC is
more effective with a longer pulse duration (especially when
T is much less than 7) but it finally saturates when 7 is com-
parable to or much longer than . Fig. 4 shows a typical
dependence of V, on T with I, y, E, A and Q/2n set to
be 152 mW/cm? 1400, 8 kV/cm, 21.3 um and 60 Hz,
respectively. As expected, V, decreases with the increase
of T but finally reaches the minimal with 7 longer than
~30 ms. Similar dependence of ¥, on T was also observed
by Podivilov et al. [11]. We notice that the pulse profile dis-
tortion grows with the decrease of 7" and it becomes serious
when 7T is much less than 7. In this case, the spectral band-
width of the Gaussian pulse is much broader than AQ,
therefore, the frequency components of the pulse cannot
be uniformly delayed and amplified [12]. To delay short
pulses while keeping their profile fidelity, high pump inten-
sities or fast-response-rate PR materials, such as quantum
well and semiconductor should be employed. We also note
that the group velocity of a single pulse is much larger than
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Fig. 4. Measured T-dependence of V, for a single Gaussian pulse. The
values for I, y, E, A and Q/2n were set at 152 mW/cm?, 1400, 8 kV/cm,
21.3 pm and 60 Hz, respectively. The curve is guided by the experimental
data.
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that in the quasi-cw case under the similar experimental
conditions. This may be due to the fact that the interaction
duration between the pulse and the pump in the single
pulse case is determined entirely by the pulse duration,
while the PHC effect accumulates one pulse after another
because of the memory effect of the PR gratings and there-
fore is enhanced in the quasi-cw case. In addition, the PR-
PHC process is more complicated in the single pulse case
than that in the quasi-cw case because the frequency com-
ponents of a single Gaussian pulse are more complicated
than those of a sinusoidally modulated wave in the quasi-
cw case. To describe the dynamic propagation properties
of a single pulse in the presence of a dispersive PHC effect,
a modification to the theory of the PHC-induced ultraslow
light in the quasi-cw case is necessary, which is currently
under way in our laboratory.

4. Conclusions

In summary, we have decelerated a single Gaussian
pulse down to ~0.5 m/s while keeping its high profile
fidelity with a cw pump beam in BSO crystals at room tem-
perature by using the highly dispersive PR-PHC effect. The
group velocity of a Gaussian pulse is proved to be control-
lable to a great extent by changing the experimental condi-
tions, such as the pump intensity, the strength of the
externally applied electric field and the pulse duration.
The delayed Gaussian pulse keeps its temporal profile
when the pulse duration is comparable to or much longer
than the response time of the dispersive PR-PHC process.
The ultraslow Gaussian pulse is amplified due to an inten-
sity coupling effect. Such a technique may be useful for
optical delay lines as well as acousto—optic devices.
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Abstract

We investigate the group velocity of light in a one-dimensional volume grating inside lithium niobate crystals doped
with different impurities. The superluminal and slowdown light propagations are both observed in the crystals. The rela-
tionships between the group refractive index and the grating amplitude and phase shift are presented and discussed.
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Optical waves in a volume grating behave sim-
ilarly to electrons in the energy-band structure.
For example, their group velocity is lowered to
zero at the band edge [1]. Such a periodic struc-
ture exhibits strong group velocity dispersion, as
studied on a GaAs-AlAs periodic-layered med-
ium [2] and on a fiber Bragg grating [3]. There
is also study on the slowing down of the group
velocity of light by a volume grating in a photore-
fractive crystal of lithium niobate [4], which can

* Corresponding author. Tel./fax: +862266229419.
E-mail address: fenggao@nankai.edu.cn (F. Gao).

be explained by a change in the effective refractive
index due to the grating [4]. Gratings with differ-
ent origins may affect propagation behaviors of
light in different ways, so in this paper we exper-
imentally investigate the group velocity in the
volume gratings with different origins as a result
from different dopants in the crystal and try to
find how gratings with different origins affect the
results.

According to the coupled-mode theory [5,6], the
complex amplitude of an optical wave passing
though a reflection grating under the off Bragg
condition is

0030-4018/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
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A(z) = A(0) exp (—iA2k2>
scoshs(L — z) — i% sinhs(L — z)
scoshsL — 4 sinh sL

(D

where A(z) is the complex amplitude of the trans-
mitted beam and L is the interacting length along
the direction of grating wave vector. s is given by
s=[K? - (%)2]3 in which k = ®1is the coupling con-
stant, n; is the index modulation of the grating, and
Ak defined as Ak = 2n% cos 0 — 2 is the phase mis-
match, where 0 is the mismatch angle, 7 is the refrac-
tive index of the crystal, w is the angular frequency
of the incident beam and A is the grating period.
Eq. (1) follows immediately that the phase shift of
the beam transmitting out of the crystal’s grating by

®(z)

L -
—Az-i-tan [ > tanh s(L z)}

A
+ tan™! {Zf tanh SL:| , (2)
The phase shift at z = L is then given by [4]
d = %L + tan™! ﬁf tanhsL} ) (3)

By differentiating the phase shift per unit length

with respect to w, we obtain the effective group

velocity of light propagating through the grating

as [4]

Ak)? 2 2

Vg(L) = v, Ak(22> K C?Sh sL ’
(&)" — w2 sinbek cosh s

(4)

where v, defined as v, = ¢/n is the group velocity of
electromagnetic waves in the host medium in the
absence of the volume grating. We also define
the effective refractive index ney as neg = ¢/ V. If
negr 18 larger than n, it corresponds to the slowdown
light propagation, while if smaller, it is the case of
superluminal light propagation. Because we record
the reflection grating in a small incident angle to
avoid the surface back reflection affecting the re-
sult of the experiment, according to the Kogelnik
formula, the diffraction efficiency # in our experi-
ment could be given by

L
ntanhz( r >7
coso

(5)

72

F. Gao et al. | Optics Communications 257 (2006) 185-190

where o is the incident angle of the recording
beams outside the crystal relative to the normal
of crystal surface. From Eqgs. (4) and (5), we can
easily get the relationship of V, as a function of
n and Ak.

In Fig. 1, we present the normalized effective
group velocity V,/v, depending on n and Ak.
V/ve is lager than 1 or smaller than 1 correspond-
ing to the case of superluminal light propagation
and the case of slowdown light propagation,
respectively. In Fig. 1, we take L as 10 mm, which
corresponds to the length of the samples #a and
#b in the z-axis direction. It can be seen that the
normalized group velocity is not obviously deviant
from 1 when # is small, i.e., no obvious propagat-
ing time change can be observed, for example,
point A in Fig. 1. At a certain Ak, a fairy large
change of the normalized group velocity should
be observed when 5 is high enough, for example,
at point B. It is also seen clearly that the result is
sensitive to the phase mismatch. From Fig. 1, we
can also see that the linear properties between
the normalized group velocity and # can be
roughly fulfilled when 5 is small and Ak is fixed,
and if the fixed phase mismatch Ak is large
enough, n can be up to 0.8 and this quasi-linear
properties still keeps. Therefore, it could be
roughly described as Vy/vg =n/neg=an+1,
where « is fitting constants. When a < 0, it is corre-
sponding to the case of slowdown light propaga-
tion, otherwise to the case of superluminal light

w
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Fig. 1. The dependence of the normalized group velocity (%)
on the diffraction efficiency # and the phase mismatch Ak.
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propagation. This formula can be transformed to
neig = n/(an + 1). We should find that the temporal
evolution of the effective refractive index n.gy is
coincident with the diffraction efficiency 5 in the
case of slowdown light propagation, while it is
opposite to that of # in the case of superluminal
light propagation in the experiment.

In the experiment, we measured the diffraction
efficiency and the effective refractive index. It is a
very common and useful method of measuring
the propagating time difference of the probe beam
to get the probe beam’s group velocity, and a sin-
gle pulse usually serves as a probe beam if its
group velocity is low enough to ignore the system
error from the dispersive pulse broadening, for
example, in the experiment of EIT (Electromag-
netically induced transparency) [7,8]. The volume
grating in our experiment has chromatic dispersion
large enough to cause obviously dispersive pulse
broadening, but the group velocity can not be re-
duced as low as that in EIT materials, in which
the probe beam’s propagating time difference is
at least 10 %s [7] and even 10 *s [8]. Therefore,
it is not suitable to choose a single pulse as a probe
beam in our experiment, and we have to introduce
an optical wave with a narrow bandwidth other

Ar* Laser(514.5nm)

70MHz~
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than use a single pulse as in EIT, so as to avoid
the system error from the dispersive pulse broad-
ening and ensure the measurement accuracy of
the propagating time change from the difference
of the light’s group velocity in the crystal. In the
experiment, we used a temporal beat beam, which
was obtained by means of optical non-degenerate
coherence between two beams at different frequen-
cies out of an acousto-optic modulator (AO). The
experimental setup is shown in Fig. 2. An output
laser beam from an Ar" laser at 514.5 nm was split
into two beams. One of them directing in the way
of path2 was used to record a photorefractive
reflection volume grating in the crystal. The
other beam in the direction of pathl was diffracted
by an acousto-optic modulator (AO) operating at
~70 MHz. The first order diffracted beam and
the undiffracted beam out of acousto-optic modu-
lator were recombined via a beam splitter (BS2).
Thus, at the same modulation frequency of
~70 MHz, two sinusoidally modulated beat beams
were formed by means of the non-degenerate
coherence. One acted as a reference, the other as
the probe beam passing through the volume grat-
ing under the off-Bragg condition. The probe beam
transmitting out of the crystal (the signal) and the

beat generator

. BS1  pathi

N
e Ao
\\

.

S\
ath2 .
N

Y
shutter2 >

[OXO)

(1]
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ad

M5
signal source

& p2
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Fig. 2. Experimental configuration: AO is operating at the frequency of ~70 MHz. M1-M6, mirrors; BS1-BS3, beam splitters;
A1-A2, attenuators; D1-D2, detectors; shutterl-shutter2, shutter; prism, act as a mirror; OS, oscilloscope.
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reference beam were detected and the waveforms
of them were monitored by an oscilloscope (OS).
In this way, the time change of the probe beam
propagating through the crystal during the grating
building could be observed by the phase difference
between the reference and the signal, from which
the effective refractive index (consequently the
group velocity) in the propagating direction of
the probe beam inside the crystal could be deter-
mined. It is also seen clearly that the result is sen-
sitive to the phase mismatch, and it is important to
make sure that the change of the phase mismatch
consequently the change of the group velocity
comes from the building of the grating. In the
experiment, we prepared different initial phase
mismatch conditions by tuning the incident angle
of the beating beam in order to observe both the
slowdown and superluminal light propagations.
Once an incident angle was chosen, we kept all
the components in Fig. 2 fixed to preserve an un-
changed phase mismatch except for the additional
influence from the building process of the grating.
During the grating building process we blocked
one of the recording beams from time to time
and measured the transmitted and diffracted
beams of the other recording beam to calculate
the diffraction efficiency. Then, we blocked the
two recording beams and turned on the probe
beam immediately to measure the phase difference
of the signal and the reference beam. The probe
beam was opened only for a very short interval
to minimize the erasure of the grating. The typical
time lag between the two measurements is less than

F. Gao et al. | Optics Communications 257 (2006) 185-190

5s in the experiment. All above is to ensure the
accuracy of the measurement.

To study the relationship between gratings with
different origins and the effective refractive index,
we chose three lithium niobate crystals with differ-
ent dopants. These crystals are referred as crystal
#a doped with 0.025 wt% Fe, #b codoped with
0.05 wt% Fe and 0.8 mol% Mg, and #c codoped
with 0.15 wt% Fe and 0.01 wt% Mn, respectively.
The linear dimensions (x X yXxz) of the three
crystals were 10 mm x 10 mm x 10 mm, 20 mm X
5mm X 10 mm, and 5 mm X 5 mm X 25 mm, respe-
ctively. Typical experimental results of slowdown
and superluminal light propagation in the three
samples are shown in Figs. 3-5 in which time
dependences of the effective refractive index rngy
and diffraction efficiency 5 in the build-up process
of the gratings are both presented. In the experi-
ment, the time counter is stopped when the two
recording beams are blocked, thus the time lag
between the diffraction efficiency and the effective
refractive index is much smaller than the total time
of the build-up process. We neglect the time lag in
the figures. In the process, n; is growing with time
which results in the changes of both # and n.
Figs. 3(a), 4(a) and 5(a) show the case of slowdown
light propagation while Figs. 3(b), 4(b) and 5(b)
indicate the case of superluminal light propaga-
tion. The result of the superluminal case is
achieved with the probe beam introduced at the
Bragg angle of the grating and the Ak is almost
zero. The result of the slow light case is achieved
with the probe beam in the direction where its

v r 8 3
TI 0.4 i ./-/l—-\; 1 n 09 B §ﬁ§ ././I—-
0.3} VAR
/ /§/§ 6 0.6} " 9—p 12
0.2} 2 1
I 4 Nest - \_ Mo
0.1} —.—— ] 0.3r L
o 11 —u— q \
0.0 T 1 _°|_ l:‘ef.f 12 0.0 = O Ny é
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a time(s) b time(s)

Fig. 3. Time dependence of the effective refractive index ne; and the diffraction efficiency 1 during the building of the grating in the
sample #a. (a) The data of slowdown light propagation at the Ak ~ 628 m~; (b) The data of superluminal light propagation at the

Ak ~0m™". The lines are just guides to eyes.
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Fig. 4. Time dependence of the effective refractive index n.; and diffraction efficiency # in the crystal #b. (a) The data of slowdown light
propagation at the Ak ~ 628 m™'; (b) The data of superluminal light propagation at the Ak ~ 0 m™'. The lines are just the guide to
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Fig. 5. Time dependence of the effective refractive index n.yand diffraction efficiency # in the crystal #c. (a) The data of slowdown light
propagation at the Ak ~ 251 m™'; (b) The data of superluminal light propagation at the Ak ~ 0 m™'. The lines are just the guide to

eyes.

transmission is the largest in the immediate vicinity
of the Bragg angle when the grating has been built
up, for example, point B in Fig. 1, where sL = im,

1
ie., Ak:2(K2+(7t/L)2)2. In the theory, this

direction corresponds to the Ak which gives almost
the slowest group velocity [4]. It is also noticed
that x is much smaller than n/L, thus A k ~ 2n/L.

From Figs. 3 and 5, i.e., in the crystals #a and
#c, It is seen that the temporal evolution of the
effective refractive index n.y is more or less coinci-
dent with the diffraction efficiency 7 in the case of
slowdown light propagation, while it is opposite to
that of # in the case of superluminal light propaga-
tion. This agrees the theoretical prediction of
neig = n/(an + 1). We also note that there is obvi-
ous difference among the results of the three LiN-
bOj; crystals. The largest ny, the highest saturation
diffraction efficiency #, and the slowest light

75

velocity as low as ¢/6 are observed in the crystal
#a, and during the grating building process, the
temporal evolution of n.y rises or falls with # as
the theoretical prediction. The change of the nor-
malized group velocity is larger than the theoreti-
cal result shown in Fig. 1. This remains unclear
now. Since the crystal #a is doped with iron, a
fairy strong bulk photovoltaic field is always in-
duced during the grating buildup process. There-
fore, the grating is probably driven to move by
the photovoltaic field, which may bring an addi-
tional phase shift due to the Doppler effect other
than this mechanism. This may possibly bring
some influence on the measurements. In addition,
It is also found that the fanning effect in the crystal
#a is another affecting factor. For example, due to
the fanning, # slightly falls down during the
growth of n.g grows at the end of the curves in
Fig. 3(a), which does not agree with the theoretical
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analysis. On the other hand, we obtained a mono-
tonic temporal buildup result for # in the crystal
#b. But it is also found that n.s oscillated some-
what chaotically in both slowdown light propaga-
tion and superluminal light propagation cases in
this crystal. The crystal #b is co-doped with iron
and magnesium, and we suppose that both the
bulk photovoltaic field and the diffusion field con-
tribute to the formation of the grating. As it is well
known, the photovoltaic effect and the diffusion
fields are related to the local and non-local re-
sponses, respectively. Therefore, the phase shift be-
tween the interference fringe and the light-induced
index grating is more complicated so that such a
result is obtained. It has been investigated that
the group velocity changes in photorefractive two
wave mixing [9]. We take it as one of the other
mechanisms involved into the group velocity
change with both larger phase shift and more obvi-
ous coupling between the probe beam and its
reflection from the grating, which are both due
to the non-local responses from the existence of
magnesium. It is suggested that this mechanism to-
gether with the mechanism of Eq. (4) took effect in
the crystal and made the temporal change of group
velocity irregular whilst the temporal change of #
is regular. Also, we observed the vibrating » during
the grating buildup process in the crystal #c. We
attribute it to the result of the co-existence of a
phase grating created by the photorefractive effect
and a photochromic grating due to co-doping with
iron and manganese [10]. The phase grating has
relative movement to the photochromic grating
temporally dependent due to photovoltaic field
which makes n; oscillate temporally and influence
the 5 and the n.g to oscillate temporally. It is seen
from the Fig. 5 that n.y mainly shows correspon-
dences to the temporal evolution of # for some
time ahead in the build-up process the grating.
We can describe the above relationship as neq(z) =
n/(an(t + 1) + 1), where a is fitting constants, ¢,
(positive in the result) means that the n.y is some
time ahead relative to the #x. This is probably
caused by the difference that n.y is phase-sensitive
to the probe beam while 7 is amplitude-sensitive to
the probe beam. At the beginning, the two gratings
are overlapped. When the relative movement
happens between the two overlapped gratings,
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the change of the total refractive index modula-
tion will affect the phase of the probe beam earlier
than the amplitude of it, which results in #y. The
detail process of the relative movement of the grat-
ing is too complex to analysis and need further
investigation.

In summary, we have experimentally investi-
gated the superluminal light and slowdown light
propagations through photorefractive volume
gratings in lithium niobate crystals doped with
different dopants. Besides the diffraction efficiency
and the phase mismatch due to the off-Bragg angle,
we found that the gratings with different mecha-
nism origins are also of great influence on the
results. The relationships between the effective
refractive index and the gratings with different
origins are also studied and discussed, which
deserve further investigation.
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ABSTRACT A high-accuracy finite-difference beam-propaga-
tion method (HAFD-BPM) based on high-accuracy divided-
difference formulas is presented. The truncation error in this
HAFD-BPM is reduced to o (Ar)4in the transverse direc-
tion, whereas the error in a conventional FD-BPM is typically
o0 (Ar)?. Gaussian beam propagation in vacuum and nonlinear
medium is simulated by this new method and conventional one.
The comparison between them in computing time and accuracy
reveals the advantage of this new method. As an example, this
method is applied to the simulation of blow-up in self-focusing
of a Gaussian beam.

PACS 42.65.Hw; 42.25 Bs; 02.70.Bf

Introduction

The beam-propagation method (BPM) has been es-
tablished well as a versatile numerical tool for simulation and
analysis of electromagnetic wave propagation in guided-wave
photonic devices and nonlinear media [1-6]. Owing to its
high accuracy and computing efficiency, the finite-difference
BPM (FD-BPM) is currently more widely used than the fast-
Fourier-transformation BPM [7, 8]. It has been shown that the
accuracy of conventional FD-BPM strongly depends on the
number of transverse grid points [3] due to the typical trans-
verse discrete errors of o (Ar)>.

In this paper, we present a new FD-BPM that is based on
the high-accuracy divided-difference formulas to reduce the
truncation error to o (Ar)* in transverse direction. Its com-
puting time will increase because the matrix changes from
tridiagonal matrix to pentadiagonal matrix, but it is worthy
since a greater improvement in computing accuracy can be
obtained. Numerical simulations of a Gaussian beam propa-
gation in nonlinear media reveal the advantage of this new
method. As an application, we have used this new scheme to
simulate the blow-up in self-focusing of a Gaussian beam.

2 Numerical methods

We write the field envelop as E = Eyy, and Ej is
the field amplitude at (z, r) = (0, 0). Applying slow varying

B0 Fax: 86-22-23499981, E-mail: jjtian@nankai.edu.cn
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envelope approximation, we can write the partial differential
equation that describes the propagation of the electric field en-
velope in a nonlinear medium as:

o _1, 1 1
L LY, (1a)
with

(P oy

L,~—<ﬁ ;5), (1b)

where the transverse components are normalized to the beam
waist radius in r direction, 7 = r/wy, the longitudinal distance
is normalized to the Rayleigh length, 7 = z/z9, zo = kw} /2 the
Rayleigh length is, k is wave-vector, and p (i) is nonlinear
coupling function.

Let ¥/ (7) be the complete solution to (1) at 7 = 7/, so the
solution at 7/ = z' + AZ can be written in terms of /' (7) as

2t

[ Py dz | ¥

1

A 1
1//]+1 =exp _ZLr + —

4q 4i @

z

Above equation can be rewritten in a second-order accuracy
form by symmetrical split operator

AZL, _ _ AZL
1lerl A exp [T] exp [p(lﬂ)Az] exp [ Y

r

] v, (3a)

21+1

) 1 _
p(l//)=4i—AZ_ p(¥)dz.

!

(3b)

z

The symmetry in (3) is actually very important since after the
first upgrading of the phase the half steps of propagation can
be combined into single propagation step according to the fol-

lowing rule:
o (5o (57) =0 ().

The algorithm for propagating the field over a distance AZ
thus consists of an incrementing of the phase in accordance
with nonlinear medium changes, followed by a vacuum

AZL,
8i

AZL,
8i

AZL
4

“)
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propagation of the resulting field over a distance Az, i.e. solv-
ing the equation

w1
=_—LV.
2 bV

0z ®)

Using the Crank—Nicholson scheme, the (5) can be derived as

follows:
(5=

The discrete field at the lattice point 7 = mAr and 7 =[AZ
will be represented by .. The first derivative term and sec-

ond derivative term for 7 with the accuracy of o (AF)2 can be
derived as follows [9]:

% _ wm-H - wm—l

LAz
1422

L,AZ
] 8i

Py (6)

— = - , (7a)
or 2AF
321# wm+1 - 21;0"1 + Wm—l
- = . 7b
b

Meanwhile, the first derivative term4and second derivative
term for 7 with the accuracy of o (AF)" are

W _ — Y2 + 81 — 81 + Y2

— — (8a)
or 12Ar
PY —VYmaa+ 16Vt — 300 + 16V — Y2
— = ~ . (8b)
or? 12A72

For the conventional FD-BPM, substituting (7) into (6) and
collecting terms, the following finite-difference equations can
be derived:

I+1

A+ Bt + il = F,, (9a)
Flo=Apvn,_ + B, +Cot . (9b)

The coefficients in the last equations are expressed as follows:
Gosi) 5-2)
Az

where p = St

To avoid the singularity at 7 = 0 L’Hospital rule must be
applied, and ¥/ | = /! (first derivative with 7 is zero at 7 = 0)
is assumed. The expressions for Ay, By, Cp become:

2m —1

2m+1

_2m
T 2m+1)

1
ip

m =

L,
(10)

1
— 1,

Ap=0,
0 4ip

By

= Co=1. (11)

To satisfy the boundary conditions for ¥ = (N — 1) Ar, we
set wf\, = 0, which is equivalent to adding a sharp reflecting
boundary at the edge of the numerical window. In order to
keep /i, = 0, the size of numerical window has to be at least
four times larger than beam size for Gaussian beams.

The numerical scheme described by (9)-(11) is the
essence of the Crank—Nicholson method, and when numer-
ically implemented involved solving (9), the matrix of coeffi-
cients for (9) is the so-called tridiagonal matrix; and therefore
the computation of (9) can be easily performed analytically
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using Thomas algorithm and involves only (2N — 1) floating-
point operations of multiplications and divisions [10].

Meanwhile, for the HAFD-BPM, substituting (8) into (6)
and collecting terms, the following finite-difference equations
can be derived:

Omllfflnjilg + Pm lﬁ,l;r,ll + leﬂan + lel/rlntrll + Smw;lnt:Z = Tnlw
(12a)
Ty = Op U, o+ Paih,  + Q5 Wh + R, + S5, 1//;111(Jrlzz~b)

The coefficients in the above equations are expressed as

follows:
( 15 (5i1).

2m —1 2m —1

2m+1 2m+1
0, =" (3042 Ry =—16, 8, =1
m 2m +1 pP £l m — ) m — E)
AZ
= — (13)
96i (Ar)

To avoid the singularity at ¥ = 0 L’Hospital rule must be ap-
plied, and assume that ¢ | = ¢! and ¢ , = /.. The expres-
sions for Og, Py, Qo, Ry, So, O1 become:

1

4pp

Op=01=P =0,

Ry=-16, Sy=1. (14)
The numerical scheme described by (12)—(14) is the essence
of the HAFD-BPM, and when numerically implemented in-
volved solving the system is the so-called pentadiagonal ma-
trix. Because this matrix is a constant coefficient matrix in
numerical simulation, we only need to decompose this matrix
into one time by LU decomposition method. These triangu-
lar matrixes are also tridiagonal matrixes. A two-step strat-
egy can be applied to solving the system efficiently and only
need (4 N — 3) floating-point operations of multiplications and
divisions [10].

3 Numerical results

As an illustration of this new method, we analyze
the propagation of a Gaussian beam with form v = exp (—f2)
in vacuum and a nonlinear medium with the nonlinear coup-
ling functionp () = |y|*. Two main parameters of the Gaus-
sian beam were computed numerically and then compared
with the analytical values. They are beam size that is evaluated
as the second moment of intensity

2 (= =\ = 4="11/2
27 [ F2] r,z)rdr
wioy= | Tl PIETE (15)
271/0 I(r,z)rdr
and the total power of beam:
[o.¢]
1n@=2n/10jyﬂﬁ (16)
0
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For Gaussian beam propagating in vacuum, a true percent
relative error g, is defined as:

analytical value—numerical value
&=

100%| ,

. a7)
analytical value

where the subscript t denotes that the error is normalized to
a true value. Meanwhile, for Gaussian beam propagating in
anonlinear medium, the percent relative error ¢, is define as:

high accuracy approximation—
current approximation

£a = 100%] ,

(18)

high accuracy approximation

where the subscript a denotes that the error is normalized to an
approximate value.

4 Discussion

4.1 Propagation in vacuum

First, we discuss the Gaussian beam propagation in
vacuum. In order to reduce the error introduced by Az, we
choose step size in propagation direction to be Az = 0.005.

The true percent relative error & of the beam radius
of Gaussian beam propagating in the air for FD-BPM and
HAFD-BPM is shown in Fig. 1. It is seen that the comput-
ing accuracy by HAFD-BPM is better than that by FD-BPM
for same transverse step size Ar. In order to compare conve-
niently the computing accuracy of the two methods, we define
R. as the ratio of HAFD-BPM’s ¢; to FD-BPM'’s:

R — The true percent relative error of HAFD-BPM

e =

19)

The true percent relative error of FD-BPM

It is seen in Fig. 2 that minimum R, is 0.02 and maximum R,
is 0.12. Therefore, the computing accuracy of HAFD-BPM
increases by one or two order of magnitude under the same
transverse step size A7, compared with FD-BPM. The opti-
mal step size of A7 lies in a range from 0.05 to 0.1.
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FIGURE 1 The true percent relative errors of beam radius ¢  as a function

of transverse step sizes A7 for HAFD-BPM and FD-BPM
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FIGURE 2 The ratio of error R, , of beam radius for FD-BPM and HAFD-
BPM as a function of transverse step sizes Ar

The true percent relative error &; of the power of Gaussian
beam propagating in the air for FD-BPM and HAFD-BPM is
shown in Fig. 3. It is seen in Fig. 4 that minimum R, is 0.015
when Ar equals to 0.06 and maximum R, is 0.135 when Ar
equals to 0.3. Therefore the computing accuracy of HAFD-
BPM increases by one or two order of magnitude under the
same transverse step size Ar, compared with FD-BPM. The
optimal step size of Aris 0.06.

4.2 Propagation in nonlinear medium

We choose the step size in propagation direction to
be Az = 0.005 and the distance of beam propagation to be 5z¢.
The relationship between percent relative error &, (see (18))
and transverse step size A7 is shown in Fig. 5. The true percent
relative error &; of the power of Gaussian beam propagating in
the case of nonlinearity FD-BPM and HAFD-BPM is shown
in Fig. 6. The maximum percent relative error is ¢, = 6 for FD-
BPM and ¢, = 0.5 for HAFD-BPM. It is seen in Fig. 7 that
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FIGURE 3 The true percent relative errors of power &_p, as a function of
transverse step sizes Ar for HAFD-BPM and FD-BPM
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minimum R, is 0.02 when A7 equals to 0.08 and maximum
R. is 0.135 when AF equal to 0.3. Therefore, the computing
accuracy of HAFD-BPM increases by one or two orders of
magnitude under the same transverse step size A7, compared
with FD-BPM. The optimal step size of Ar is 0.08.

To compare the computing speed of both methods, the
CPU time required per propagation step is evaluated on a PC.
The ratio of computing time required by the two method Ryime
for some transverse step size A7 is shown in Fig. 8. We can
see that the computing time is about two times longer than
that of FD-BPM. Butitis worthy because the computing accu-
racy of HAFD-BPM increases one or two order of magnitude,
compared with FD-BPM.

4.3 Blow-up in self-focusing

As an application of this new scheme, we use
it to simulate the blow-up in self-focusing of a Gaussian
beam. Under very general conditions on p (¢) of (la), the
Cauchy problem has a unique local solution v (r, z) with
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FIGURE 8 The ratio of computation time Ryme for FD-BPM and HAFD-
BPM as a function of transverse step sizes A7
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z €[0, Z). A basic problem is whether these solutions can
be continued to Z = oo, that is, to a global solution in r.
When the solution is not global, we speak of collapse or
blow-up. When the solutions are global but develop “strong
peaks” during evolution, one speaks of quasi-collapse pro-
cesses. In the quasi-collapsing examples there is not a full
collapse, but the amplitude grows in a localized spatial re-
gion leading to a spike of the amplitude of solution, which
is difficult to describe using standard numerical scheme. This
is also the case during real collapse processes, where the
scheme must be able to integrate the solution up to the vicin-
ity of the collapse point and even to detect the existence of
the singularity, a fact which is not known a priori in some
cases.

Let p (¥) = 6|¥|%, Ar =0.01, Az = 10~* and the initial
value of electric field be ¥ (0, r) = exp (—7?), we can obtain
the relation between on-axis electric field and propagation
distance, as shown in Fig. 9. The inset figure gives the detail
around collapse point. For FD-BPM and HAFD-BPM, we can
get the expressions as followings, respectively

¥ (z,1)+ 0 (A2)* + O (Ar)?
¥ (z,r)+ 0 (Az)* + O (Ar)*

Y(z+Az,r)=
Y(z+Az,r)=

(20a)
(20b)

When propagating to the vicinity of collapse point, the ampli-
tude of ¥ increases drastically, this leads to a drastic increase
of truncation errors due to Ar and Az. So the amplitude os-
cillation of ¥ in vicinity of collapse point is an artificial ef-
fect that arising from truncation error of Ar and Az. If step
size decreases, this artificial effect also decreases. In order
to get the approximate position of collapse point, we must
set a criterion. The amplitude of electric field must increase
monotonously with propagation distance. If this rule is bro-
ken, it can be thought that collapse point has reached. The
position of collapse point as a function of Ar is shown in
Fig. 10 for FD-BPM and HAFD-BPM, where the step size is
setto be Az = 107°. It can be seen that using HAFD-BPM we
can approach the collapse point better than using FD-BPM.
The position change of collapse point with Az is also shown
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FIGURE 9 The on-axis electric field as a function of propagation distance
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FIGURE 11 The positions of collapse point as a function of Az for HAFD-
BPM

in Fig. 11 for HAFD-BPM, where Ar = 0.01. It can be seen
in Fig. 11 that the best approach to the collapse point can be
achieved by reducing the step size Az.

5 Conclusion

A high-accuracy finite-difference beam-propaga-
tion method (HAFD-BPM) based on high-accuracy divided-
difference formulas is presented. The Gaussian beam prop-
agating in vacuum and nonlinear medium by this new
method and conventional method is simulated. Compared
with FD-BPM, it is worthy that its computing accuracy
gets a great improvement although its computing time in-
creases a little. As an application, we use this new scheme
to simulate the blow-up in self-focusing of a Gaussian
beam.
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Nonlinear refraction and nonlinear absorption of self-assembled porphyrins in the nanosecond and picosecond
regimes were studied at 532 nm by the Z-scan technique. First, a marked difference in nonlinear refraction
was observed between self-assembled zinc porphyrins and free base porphyrins; however, the effects of self-
assembly and metallization on nonlinear absorption are small. Second, an enhancement of nonlinear absorption
was observed for the monomeric components of self-assembled structures by adding pyridine, while their
nonlinear refractions remained almost unchanged as pyridine was added. It is expected that the metallization
and addition of ligand can provide more convenient routes to alter the optical nonlinearities of porphyrins
than the modifications of molecular structures of traditional covalent-bond organic materials.

Introduction

Organic compounds and organometallic complexes with
mr-electron delocalization have received significant attention in
the last two decades because of their large and fast nonlinear
optical response and potential applications in optical com-
munication, data processing, optical switching, and so forth.1-2
Porphyrins are promising candidates for such nonlinear optical
(NLO) materiasin view of not only large z-conjugated systems
but also versatile modifications of structures and various
possibilities of the central metal ion.34 Most reports about optical
nonlinearities of porphyrins, up to now, have been focused on
reverse saturable absorption (RSA) between Soret and Q
absorption bands,>~15 off-resonant third-order nonlinearities, and
two-photon absorption (TPA).16-27 For example, under off-
resonant conditions, a linear porphyrins array linked by butadiyne
has been shown to exhibit among the largest ¥ vauesin any
organic materials.’” Anderson et al.2 reported triply linked
porphyrin with the extended region of RSA from the visible to
near-infrared range. Recently, alarge number of porphyrinswith
different molecular structures were reported on their RSA, 13715
off-resonant third-order nonlinearities, and TPA .21-26 However,
the reports on nonlinear refraction of porphyrins in the region
of RSA are few.

With the development of porphyrins,?® a supramolecular
porphyrins system with large third-order optical nonlinearities
and strong TPA has been obtained by using the complementary
coordination of imidazolyl to the zinc of imidazolylporphyri-
natozinc(l1) in the noncoordinating solvent chloroform.1%2° The
self-assembly of porphyrins greatly enhanced the off-resonant
third-order nonlinearities and TPA for per-porphyrin unit. In
the region of RSA, to our knowledge, the effects of self-
assembly and ligand on optical nonlinearities of supramolecular
porphyrins are not reported yet.

In this paper, we studied both nonlinear refraction and
nonlinear absorption of self-assembled porphyrins by using a

* Author to whom correspondence should be addressed. E-mail: jjtian@
nankai.edu.cn.

TTEDA Applied Physical School, Nankai University.

* College of Chemistry, Nankai University.

Z-scan method® at 532 nm in nanosecond and picosecond
regimes. Compared with free base porphyrins, self-assembled
zinc porphyrins have a marked difference of nonlinear refraction
and but little difference of nonlinear absorption. Furthermore,
the effects of the coordination solvent pyridine on optical
nonlinearities of self-assembled zinc porphyrins were aso
observed. An enhancement of RSA was obtained by the addition
of pyridine. However, the addition of pyridine cannot affect
the nonlinear refraction of zinc porphyrins. We used a five-
level model to simulate experimental data.

Experimental Section

Materials. Molecular structures of porphyrins studied in this
work are shown in Scheme 1. Since zinc porphyrins appended
with nitrogen ligands can interact with each other to form
complementary dimers or multi-composites, porphyrins 1b and
2b to which 2-imidazolyl groups are directly attached were self-
assembled to afford complementary dimers 3 and 4.1° Since the
coordination bond can be cleaved in coordinating solvent, self-
assembled porphyrin dimers can be dissociated to monomers
by the addition of pyridine, and porphyrin monomers 5 and 6
can be obtained.?®

M easur ements. Electronic absorption spectra were recorded
on a UV spectrophotometer (Cary 300). Nonlinear refraction
and reverse saturable absorption were measured by using the
closed- and open-aperture Z-scan.?® A Q-switched Nd:YAG
laser (Continuum Surelite-I1) and a mode-locked Nd:Y AG laser
(Continuum model PY61) were used to generate 5-ns pulses
and 30-ps pulses with a repetition rate of 10 Hz at 532 nm,
respectively. The spatial profiles of optical pulses were nearly
Gaussian obtained by spatial filtering. The beam waist was 18
um and 20 um for 5-ns pulses and 30-ps pulses, respectively.
The incident and transmitted pulse energies were measured
simultaneously with two energy detectors (Molectron J3S-10).
At every position, an average of 50 incident pulses which are
not beyond +5% fluctuation was taken by a computer. The
sample solutions poured in a 1-mm quartz cuvette were used
with the same concentration of 2 x 10~* mol/L. The on-axis

10.1021/jp061799p CCC: $33.50 © 2006 American Chemical Society
Published on Web 07/14/2006
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SCHEME 1: Molecular Structures of Porphyrins Studied in This Work
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N n C)y . _
R, H3C ——————=-2b: M=Zn ——)

2a: M=H,

peak intensity at focus is 1.12 x 10° W/cm? for 5-ns pulses
and 4.11 x 10° W/cm? for 30-ps pulses.

Synthesis of Self-Assembled Porphyrins. In a 1000-mL
four-neck round-bottom flask, 0.94 g (4 mmol) of 5-(2-
methoxycarbonyl-ethyl) dipyrromethane was dissolved in 600
mL of chloroform, bubbled with nitrogen for 15 min. To this
solution, the mixture of 0.24 g (2.1 mmol) of 1-methyl-2-
imidazolecarboxyaldehyde, 0.8 g (7 mmol) of trifluoroacetic
acid in 100 mL of chloroform and 0.16 g (37%, 2 mmol) of
formaldehyde, 0.92 g (20 mmol) of ethyl alcohol in 100 mL of
chloroform were added simultaneously in 15 min at 40 °C. The
resulting solution was stirred for 30 min, then 1.8 g (8 mmol)
of DDQ was added. The mixture was passed through an
auminum oxide column after 1 h. Further purification was
carried out on a silica gel column. The second red band was
collected to afford la 5-(1-methyl-2-imidazolyl)-10,20-bis(2-
methoxy-carbonyl-ethyl)porphyrin (yield: 5%). The compound
la was treated with a saturated zinc acetate/methanol solution
to give porphyrin zinc complex 3. 1a 'H NMR (300 MHz,
CDCl3) 6 10.151 (s, 1H), 9.567 (d, J = 4.8 Hz, 2H), 9.517 (d,
J=4.8Hz, 2H), 9.393 (d, J = 4.8 Hz, 2H), 8.849 (d, J = 4.8
Hz, 2H), 7.697 (d, J = 1.2 Hz, 1H), 7.491 (d, J = 1.2 Hz, 1H),
5.345 (t, J = 8.1 Hz, 4H), 3.748 (s, 6H), 3.517 (t, J = 8.1 Hz,
4H), 3.382 (s, 3H), —2.970 (s, 2H). FT-IR (KBr) v 3283, 3104,
2987, 2948, 2836, 1733, 1561, 1466, 1434, 1405, 1339, 1308,
1278, 1246, 1224, 1145, 956, 919, 851, 796, 731. ESI-MS m/z
563 [M + H]*, 1125 [2M + H]*. 3 ESI-MS m/z 625 [M +
H]t, 1249 [2M + H]*.

The third red band collected was proved to be 2a 5,15-bis(1-
methy!-2-imidazolyl)-10,20-bis(2-methoxycarbonyl-ethyl) por-
phyrin (yield: 5%). The zinc complex 4 was gained by treating
2a with a saturated zinc acetate/methanol solution. 2a *H NMR
(300 MHz, CDCl3) ¢ 9.532 (d, J = 5.1 Hz, 4H), 8.878 (m,
4H), 7.716 (m, 2H), 7.519 (m, 2H), 5.360 (t, J = 8.4 Hz, 4H),
3.770 (s, 6H), 3.527 (m, 10H), —2.780 (s, 2H). FT-IR (KBr) v
3304, 3187, 3131, 3109, 2989, 2946, 2838, 1732, 1632, 1561,
1473, 1440, 1403, 1347, 1280, 1250, 1192, 1142, 1040, 980,
805, 734, 708. ESI-MS mVz 643 [M + H]*, 1285 [2M + H]*.
4 ESI-MS mVz 705 [M + H]*, 1409 [2M + H]*.

Results and Discussions

Absorption Measurements. The absorption spectra of 1a,
2a, 3, and 4 shown in Figure la present the characteristic bands

CH; R
O »
N N
Ry} Pyridine CH; LRy
iR 3
; 7
3 5
N/CH3 R, -
[ % L.
[N N NJ N
Ry

of porphyrins. The Soret bands of 1a and 2a are located around
411 and 417 nm, respectively. In the dimers of 3 and 4, two
porphyrins take a slipped co-facial form, and excitonic coupling
between two porphyrin chromophores characteristically splits
the Soret band. The Soret bands were split into twin peaks at
407 and 430 nm for 3 and at 411 and 436 nm for 4 due to
exciton interaction originating from a dlipped co-facia arrange-
ment.3® Additionally, the Soret bands of both free base and self-
assembled zinc porphyrin with two imidazolyls (2a and 4) have
a red-shift compared with those with one imidazolyl (1a and
3).

The degree of dissociation of dimers 3 and 4 depends on the
amount of pyridine added. The split Soret bands of the CHCl3
solution of dimers 3 and 4 can gradually turn into a single peak
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Figure 1. (a) UV absorption spectra of free base porphyrins (1a and
2a) and self-assembled zinc porphyrins (3 and 4); (b) UV absorption
spectra of 3, 4, 5, and 6.
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TABLE 1: Linear and Nonlinear Optical Properties of 1a, 2a, 3, 4, 5, 6, 7 (TPP), 8 (ZnTPP), and 9 (ZnTPP—pyridine)

picosecond pulses

nanosecond pulses

Soret band Q—band 0o o1 on 70 o) O, Tisc

Amax (NM) A (nm) (10~ crm?) (107 cn?) (107 cn?) (ns) (107 cm?) (10~ crm?) (ns)
la 411 509, 584 124 4.1 2.2 0.15 2.6 -18 8.0
2a 417 514, 590 1.62 45 —-21 0.15 32 -18 6.0
3 407, 430 559, 609 1.32 3.0 0.25 19 -11 25
4 411, 435 564, 618 1.55 31 0.25 2.7 -11 2.0
5 423 557, 601 157 6.1 0.55 3.6 -10 17
6 428 562, 611 1.65 5.6 0.64 43 —-1.1 15
7 418 514, 548 1.75 5.8 -16 0.30 4.8 -12 10.0
8 419 547, 584 2.65 4.2 0.45 35 -0.8 30
9 429 563, 602 245 41 0.85 29 -09 15

aong with the addition of pyridine. When the volume ratio of
pyridine to CHCls is larger than 1:4, the change of absorption
bands is so small that we can consider that the dimers 3 and 4
were completely dissociated to monomers 5 and 6. In our
experiments, we used volume 1:1 mixture solvent of pyridine
and CHCls. For the monomeric imidazolylporphyrinatozinc 5
and 6, asingle peak in the Soret bands is observed as shown in
Figure 1b. We can see from Figure 1 that the Q-bands of
porphyrins studied in this work cover the region from 500 to
650 nm. Therefore, the laser at 532 nm used in the experiments
just excites Q-bands. At this wavelength, the ground-state
absorption cross-sections oy of al porphyrins are shown in Table
1. Aswe will discuss later, adifference of optical nonlinearities
between them is also observed when pyridine is added.

Effects of Metallization on Optical Nonlinearities. A large
third-order optical nonlinearity of this self-assembled porphyrin
system under the one-photon off-resonant condition has been
observed by using femtosecond pulses.1®2° Our work presented
here involves the excited-state optical nonlinearities of self-
assembled porphyrin between Soret and Q absorption bands.
Through Z-scan measurements using a picosecond pulsed laser,
we can obtain both the absorption and refraction cross-sections
of the singlet excited state. However, we cannot determine the
triplet absorption and refraction cross-sections since the triplet
state cannot become populated within the picosecond pulse
duration because an intersystem crossing from the second
excited singlet state to the first excited triplet state is typically
on the order of a nanosecond for the materials used in our
experiments. Hence, to study the triplet-state absorption and
refraction, a nanosecond pulsed laser has to be used. The
photophysical parameters of 1a, 2a, 3, and 4 measured in our
experiments are summarized in Table 1.

For a nanosecond pulsed laser, afive-level model, as shown
in Figure 2, can depict the excited-state absorption (ESA)
processin porphyrins and other dyes. Generally, after the initial
excitation of thisfive-level system the first excited singlet state
S: is populated. From this state the electrons may be subse-
quently excited into S, within the pulse duration of the laser.
Once arriving at S, they will rapidly relax to S; again. From

Nga
S — N
o | L
i Nsi el %
S] r rI‘S( i NT|
g | 1 e T,
[1]
Ny 7 T
NP —

Figure 2. Five-level model of excited-state optical nonlinearities.
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S;, the population can aso undergo an intersystem crossing to
the first excited triplet state T; with a time constant 7;sc and
thereafter be excited into T,. Similar to S, this state relaxes to
T1 rapidly. An efficient RSA material whose transmission
decreases as the incident intensity increases should have a high
ratio (> 1) of the absorption cross-sections of the excited states
gyand oz (T1 — T and S; — ) to the ground state oo (So —
S)). Rate equations of the five-level model can be written as®®

dNg,  oolNg Ng N "
dt hw T, T
dNs  oylNg  ogiNg Ng Ny Ny
— =t ————+—(1b)
dt hw hw T, T T,
dNs, _oNs N, W
dt ho  1g
dN, N Ny Ny W
dt ho 1 T
dNp, oN; N .
d Ao Tr, (1e)

where N; represents the population in the i state (I = So, S1, S,
T1, T2), | isinput laser intensity, and 7o is the time constant of
the population’s transition from S; to Sp. If the sample length
L is less than 7y, the equations that govern the irradiance and
the phase change can be written as®

dl

o =—ol = —(OONSO + 01N51 + GZNT1)| (29)
d
_dqzs = kAn = UHNS1 + OerTl (2b)

where k = 27/ is the wave vector, 1 is the laser wavelength,
and oy, and oy, are the singlet and triplet excited-state refractive
Cross-sections, respectively.

If the picosecond pulsed laser is used, the five-level model
(S0, S1, S, Ta, and T») can be smplified into a three-level model
(So, S1, and ) since the intersystem crossing time 7;sc is about
the order of a few nanoseconds and is much larger than the
pulse duration zp. It is difficult to obtain analytical solutions of
these time- and space-dependent differential equations. Here we
used the standard Runge—Kutte fourth-order method to solve
egs 1,2 numerically, and the irradiance and phase change of
the laser beam at the exit face of the sample can be obtained.
Then, by applying Huygens's principle and a zeroth-order
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Figure 3. Open-aperture Z-scan curves of la, 2a, 3, and 4 for the
cases of picosecond pulses (a) and nanosecond pulses (b). The solid
lines are the fittings obtained by a five-level model.

Hankel transformation, we can obtain the far-field electric field
at the aperture plane and the Z-scan curves. By theoretically
simulating the open- and closed-aperture Z-scan experimental
data, we can obtaine the values of 1, ar,, and 7o in the case of
30-ps pulses, and o2, or,, and 7isc in the case of 5-ns pulses.’?

The RSA properties of free base and zinc porphyrins (1a,
2a, 3, and 4) dissolved in CHCl3 are shown in Figure 3a (with
30-ps pulse duration) and Figure 3b (with 5-ns pulse duration),
where open-aperture Z-scan curves were measured. The solid
lines are the theoretical fittings obtained by using a five-level
model. There is no obvious difference in the open-aperture
Z-scan curves of 1a and 2a for both picosecond and nanosecond
pulses. Thisimplies that the influence of the imidazolyl isweak
for free base porphyrin. It can also be seen clearly in Figure 3
that the metallization of the zinc atom results in a decrease of
RSA in the cases of picosecond pulses and nanosecond pulses.
This indicates that the metallization affects the absorption of
both singlet and triplet excited states, since the RSA is
dominated by absorption of singlet excited states in the case of
picosecond pulses and by absorption of triplet excited statesin
the case of nanosecond pulses. For the self-assembled zinc
porphyrins with one imidazolyl 3 and two imidazolyls 4, their
characteristics of RSA are similar in the case of picosecond
pulses. However, 4 has a larger RSA than 3 in the case of
nanosecond pulses. The difference of RSA between 3 and 4 in
the case of nanosecond pulses may be due to the influence of
imidazolyl on the absorption cross-section of Tj.

In the region between Soret and Q-bands, such as at 532 nm,
most reports on porphyrins were concentrated on studies of
RSA, but their properties of nonlinear refraction are seldom
reported so far. We studied the nonlinear refraction of self-
assembled porphyrins in the RSA region. Figure 4 gives the
nonlinear refraction Z-scan curves of 1a, 2a, 3, and 4 obtained
by dividing closed-aperture Z-scan data by corresponding open-
aperture Z-scan data. The solid lines are the theoretical fittings
by eq 3, and the relative parameters of oy, and oy, are given in
Table 1. For free base or self-assembled zinc porphyrins, the
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Figure 4. Nonlinear refraction Z-scan curves of 1a, 2a, 3, and 4 in
CHCl; for the cases of picosecond pulses (a) and nanosecond pulses
(b). The solid lines are obtained by using equations (2).

effect of imidazolyl on nonlinear refraction istoo small to cause
an observable change of nonlinear refraction Z-scan curves as
shown in Figure 4. In the case of picosecond pulses, the
contribution of the singlet excited state to nonlinear refraction
is dominant, and using eq 3 to numerically fit the data of Figure
4a then yields o, = —2.2 x 107Y c¢m? for la and or, =
—2.1 x 1071 cm? for 2a. No obvious nonlinear refraction was
observed in the solution of self-assembled zinc porphyrins 3
and 4, and thisimplies that the nonlinear refraction arising from
the singlet excited state is very small. To our knowledge, it is
the first time that the disappearance of nonlinear refraction was
observed through the metallization at 532 nm.

To determine the nonlinear refractive cross-section of the
triplet excited state or,, we performed closed-aperture Z-scans
using a nanosecond pulsed laser and fitted the experimental data,
as shown in Figure 4b. Thisyielded a o, of — 1.8 x 10717 cm?
for free base porphyrins (1a and 2a) and —1.1 x 107 cm? for
self-assembled zinc porphyrins (3 and 4). The metallization of
the zinc atom aso caused a decrease of nonlinear refraction
like its effect on RSA. However, it can be seen from Table 1
that the decrease of oy, due to the metallization is smaller than
that of oy, indicating that the effect of metallization on the
singlet excited state is larger than that on the triplet excited
state. In the case of nanosecond pulses, the thermal effect should
be generally taken into account for the measurements of
nonlinear refraction. The thermal effect arises from acoustic
wave propagation caused by medium density change after local
heating, and its buildup time is determined by the time required
for a sound wave to propagate across beam size, Toc = wolCs,
where cs is the velocity of sound in the medium. In our
experimental condition, the value of 74 (20 ns) is much larger
than the duration of pulses 7, = 5 ns. Therefore, the thermal
effect can be neglected when the nanosecond pulsed laser is
used_33,34

For self-assembled zinc porphyrins such as 4, Y oshiaki
Kobuke et al.192027 have employed the femtosecond time-
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Figure 5. Open-aperture Z-scan curves of 3 and 5 in the cases of
picosecond pulses (&) and nanosecond pulses (b).

resolved optical Kerr effect and Z-scan methods to measure the
third-order optical nonlinearities in the off-resonance condition.
The optical nonlinearities from electronic polarization in the
off-resonance condition, which involves the distortion of the
electron cloud about an atom or molecule by the optical field,
was obtained and the susceptibility |y is 2.4 x 107* esu
at 800 nm with a concentration of 1.5 x 104 M.

Effect of Ligand on Optical Nonlinearities. In our experi-
ments, the coordination solvent pyridine was added in the CHCl 3
solutions of self-assembled zinc porphyrin. Since the coordina-
tion bond can be cleaved by adding a coordinating solvent, the
dimers 3 and 4 were dissociated to monomers 5 and 6 with the
addition of pyridine, which leads to a transition of Soret bands
from the split band into a single peak, as shown in Figure 1b.
Besides the induced change of linear absorption, the addition
of coordination solvent can also result in a change of RSA for
self-assembled zinc porphyrins. Figure 6 gives the open-aperture
Z-scan curves of 3 and 5 in the cases of picosecond pulses (part
&) and nanosecond pulses (part b), respectively. The results are
summarized in Table 1. The values of excited-state absorption
cross-sections are raised to 6.1 x 1077 from 3.0 x 1077 cm?
for o1 and to 3.4 x 107Y from 1.9 x 1071 cm? for oo,
respectively, when pyridine was added in porphyrins 3. For zinc
porphyrins 4 with two imidazolyls, an enhancement of both
singlet and triplet excited-state absorption cross-sections can
also befound in Table 1 when pyridine was present. Meanwhile,
it can be seen from Table 1 that the change of the ground-state
absorption cross-section oo is small when pyridine is added.
The fixity of oo and the enhancement of ¢; and o, can cause
the improvement of figure of merit (o1/0¢ and o2/0g) that is an
important parameter in the application of optical limiting.

The enhancement of RSA may arise from the significantly
different symmetries between the monomers (5 and 6) and the
assemblies (3 and 4). The different symmetries will cause
different electronic distributions. For assemblies (3 and 4), the
Soret band corresponding to higher singlet excited-state S; is
nondegenerate depending on the head-to-tail and face-to-face
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Figure 6. Nonlinear refraction Z-scan curves of 3 and 5 in the cases
of picosecond pulses (a) and nanosecond pulses (b).

orientations of transitions dipoles.® In the monomers (5 and
6), however, the Soret band is degenerate due to symmetry.
The different electronic distributions may result in different
properties of RSA between the monomers (5 and 6) and the
assemblies (3 and 4). Furthermore, the cooperative assembly
of the dimers results in a robust system that likely remains
together as the heat is dissipated from the supramolecular
compounds. Conversely, the axia coordination of pyridine by
zinc porphyrins is quite weak so the pyridine probably tran-
siently comes off the metalloporphyrins.>

The Z-scan experiments of la and 2a with the addition of
pyridine have a so been performed, and no obvious change was
observed because there is no coordination interaction between
free base porphyrins and pyridine.

The nonlinear refraction Z-scan curves of 3 and 5 are shown
in Figure 6. Opposite to RSA, the addition of pyridine cannot
result in an observable change of nonlinear refraction for both
one imidazolyl and two imidazolyls porphyrins, and the values
of oy, and oy, of 5 and 6 are shown in Table 1. This illustrates
that the complementary coordination of ligands to zinc has no
contribution to nonlinear refraction, but it does have a large
influence on RSA in the cases of both picosecond and
nanosecond pulses. For picosecond pulses, although singlet and
triplet excited-state absorption cross-sections are enhanced when
pyridine is added, the nonlinear refraction was still absent.
Therefore, the disappearance of nonlinear refraction should be
mainly caused by the metallization of zinc.

The Z-scan experiments were also carried out for simple zinc
and free base tetraphenylporphyrins (ZnTPP and TPP) in CHCl.
The change of nonlinear refraction is similar to that of self-
assembled porphyrins, indicating that the metallization of zinc
can mainly affect nonlinear refraction. However, no obvious
change of RSA was obtained by adding pyridine into ZnTPP
in the case of picosecond pulses.®® In the case of nanosecond
pulses, the addition of pyridine in ZnTPP resulted in a small
decreasing of RSA,% which is different from enhancement of
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RSA in the self-assembled porphyrin system. The data of TPP
(7), ZnTPP (8), and ZnTPP—pyridine (9) are given in Table 1.

It isvery interesting that the coordination of pyridine to zinc
porphyrins can only affect their properties of RSA, and their
nonlinear refraction cannot be obviously altered. Oppositely,
the demetallization of the zinc atom at the center of porphyrin
rings can mainly result in a decrease of nonlinear refraction.
To realize the control of optical nonlinearities and find materials
with large optical nonlinearities, more efforts have been
undertaken to establish the relationship between structure and
nonlinear optical response for organic molecules in order that
materials in particular applications can be rationally designed
and synthesized.3!! The ligands substitution in the supramo-
lecular porphyrin system provides a convenient approach to alter
optical nonlinearities of porphyrins. It can be realized much
more easily and flexibly than modifying molecular structure of
traditional covalent bond organic materials.!%% Furthermore,
through the combination of the addition of pyridine and the
metallization of the zinc atom, nonlinear refraction and RSA
can be adjusted solely.

Conclusions

In summary, this work points out that metalization and
coordination of solvent to zinc have large effects on nonlinear
refraction and RSA for imidazolylporphyrins. In the picosecond
regime, a drastic decrease of nonlinear refraction was observed
in self-assembled zinc porphyrins. The change of nonlinear
refraction is mainly attributed to the metallization. An enhance-
ment of RSA was obtained by adding pyridine to self-assembled
zinc porphyrins in the cases of both picosecond and nanosecond
pulses. In this supramolecular system, the molecular length and
the structure of the central z-conjugation system are easily
modified. The flexible control of linear and nonlinear optical
properties can be realized by using different noncova ent bonds.
Efforts are being undertaken to further enhance and characterize
optical nonlinearities of supramolecular porphyrins.
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A GaAs/AlGaAs two-dimensional electron gas (2DEG) structure with the high mobility of p2x

1.78 x

10% em® /Vs has been studied by low-temperature Hall and Shubnikov de Hass (SdH) measurements. Quan-
tum lifetimes related to all-angle scattering events reduced from 0.64 ps to 0.52 ps after illuminating by Dingle

plots, and transport lifetimes related to large-angle scattering events increasing from 42.3ps to 67.8 ps. These

results show that small-angle scattering events become stronger. It is clear that small-angle scattering events can

cause the variation of the widths of the quantum Hall plateaus.

PACS: 71.20.Nr, 72.2. Jv

The integer quantum Hall effect (IQHE) has been
studied extensively, experimentally as well as theoret-
ically, over the last two decades.!=3! It is now well
established that it is a result of the unique energy
structure of two-dimensional electron gas (2DEG) in
the presence of magnetic field B and the ubiquitous
presence of localized states, which cannot transport
electrical current across the sample.[*l After the dis-
covery of the IQHE, a linear decrease of the plateau
widths with increasing current® and with increas-
ing temperaturel® has been measured. Recently, the
dependence of widths of the integer quantum Hall
plateaus on quantum lifetimes has been reported by
Gottwaldt et all”) They demonstrated that the widths
of the spin-split quantum plateaus can be determined
by quantum lifetimes of the electrons, whereas trans-
port lifetimes are not directly related to the widths of
the integer quantum Hall plateaus. Quantum lifetimes
increases with carrier concentrations after illuminat-
ing also has been reported by Lo et all®] However,
effects of main factor on quantum Hall plateaus have
not been reported.

In this Letter, we report that quantum lifetimes
decrease and transport lifetimes increase with the in-
creasing electron density and mobility after illuminat-
ing due to the persistent photoconductivity (PPC) ef-
fect. The transport lifetime 7; is dependent on large
angle scattering events, and the quantum lifetime 7,
is dependent on all angle scattering events. These in-
dicate that the small-angle scattering would increase
to dominate the variation of integer quantum Hall
plateaus.

The sample was prepared by an RIBER Compact

21T molecular beam epitaxy (MBE) machine using
solid sources on a semi-insulting GaAs substrate.l! It
consists of a 1.2-um-thick undoped GaAs buffer layer,
an undoped 220-A-thick Al,Gaj_,As (x = 0.28)
spacer layer, a 550 A-thick Al,Ga; ,As (z = 0.28)
layer with Si-doped of 1 x 10'® cm™2, and a cap layer
with 75-A-thick Si-doped GaAs. In the measurement,
Ohmic contacts were formed by alloying AuGe and Ni
at 450°C. The sketch of the cross section of the layer
structures is shown in Fig. 1.

GaAs cap 75 A Si-doped

AlGaAs 550 A Si-doped

AlGaAs spacer 220 A undoped

2DEG

GaAs buffer 1.2 um undoped

GaAs (100) S.I. substrate

Fig. 1. Cross section of the layer structures of the sample.

Quantum lifetimes can be measured by the
amplitudes of the Shubnikov de Hass (SdH)
oscillations.[1%11] In 2DEG systems and in the case
of a GaAs/AlGaAs structure, the SdH oscillation am-
plitudes read('2]
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ARM(B):4R0K(B,T)exp(— T ) (1)

WeTq

where Ry is the zero-field resistance, w. = eB/m* is
the angular cyclotron frequency, m* is the electron cy-
clotron effective mass, 7, is the quantum lifetime (ac-
cording to the collision broadening of Landau levels),
and K(B,T) is the thermal damping factor (according
to the thermal broadening of the levels) given by

212 KT/ hw. 2)
sinh(2m2 KT /hw,)

K(B,T) =

Here h is Planck’s constant, Kp is Boltzmann’s con-
stant, and 7, can be extracted experimentally from
Dingle plots exhibiting In Z versus the inverse mag-
netic field, where Z is given by

Z:(?)M—em(w;q)- (3)

The SdH measurements of the sample are taken for
a magnetic field up to 2T (Tesla) and a tempera-
ture at 2 K. The electron mobility and electron density
are extracted from the Hall measurements at 2 K. In
our experiment, a standard commercial light-emitting
diode (LED) was used as a light source for the persis-
tent photoconductivity effect (PPC) to change elec-
tron densities. The SdH oscillation spectrum of the
GaAs/AlGaAs heterostructure sample at 2K is shown
in Fig.2. The variation of the sample resistance R,
with magnetic field B exhibits the typical 2 DEG be-
haviour.

50 T T T
] Before illuminated
40_ After Illummated i
. I=012uA, T=2K :
~ 30+ by
g ] :
8 ]
e 20
10 5
O T T T T | T T T T ] T T T T [ T T T T
0.0 0.5 1.0 1.5 2.0

Magnetic field B (T)

Fig. 2. A typical SdH oscillation spectrum of the sample
at 2 K.

Dingle plots for the sample are presented in Fig. 3.
Quantum lifetimes 7, are calculated by linear fits us-

ing Eq. (1).
Transport lifetimes 7, were obtained by

T, = m*o /ne?, (4)

where n is the density of carriers, e is the electron
charge, and m* is electron effective mass. The results
of our experiment and theoretical calculation are listed
in Table 1.

AT~

Before illuminated

S0 ANl memaes After illuminated

14 T T T T T ¥ T T T T T T T
1 r=o012pA, T7=2 -—
124 h/262
g Before illuminated

h/3e?

Ryy (kSY)

0 1 2 3 4 5 6
Magnetic field B(T")

Fig. 4. The QHE curves for the sample at 2 K.

As can be found from Table 1, the transport life-
time increases from 42.3 ps to 67.8 ps, and the quan-
tum lifetime decreases from 0.64 ps to 0.52 ps after the
sample is illuminated. The ratio between the trans-
port and the quantum lifetime varies from 66.1 to
130.4. The transport lifetime 7 is dependent on large
angle scattering events whereas the quantum lifetime
T4 is dependent on all angle scattering events.[13:14]
The transport lifetimes 74 increases with the increas-
ing electron density and mobility, which means that
large angle scattering events are reduced due to the
free-carrier increasing to screen the ionized impurity
potential.['5] Whereas quantum lifetimes decrease af-
ter illuminating, which implies that all-angle scatter-
ing increases. It is obvious that small-angle scattering
enhances after illuminating.
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Table 1. Low-temperature measure results of the sample.

Density Mobility Transport Quantum T¢/7q Plateau width
n (1011 cm™2)  p (10*cm?/V-s)  lifetime 7¢ (ps) lifetime 74 (ps) at i =6 (T)
Before illuminated 2.88 111 42.3 0.64 66.1 0.0577
After illuminated 3.76 178 67.8 0.52 130.4 0.0352

During the magnetic field up to 6 T, Hall measures
were performed both in dark and after illuminating at
2K. As shown in Fig.4, the widths of the quantum
Hall plateaus can be determined by

(5)

where h is Planck’s constant and 7 is an integer plateau

Pry = h(i€?) £ 0.1kQ,

number. The results are shown in Fig.4. As can be
seen in Fig.4, there is no evidence for the fractional
quantum Hall effect, and the widths of the plateaus
narrowed after illuminating. For example, at i = 6
plateau, the width of the plateau is 0.0577 T before il-
luminating, whereas the width becomes 0.0352 T after
illuminating (Table 1). It is believed that the variety is
caused by the increasing small-angle scattering events.

In conclusion, the SAH oscillations have been ob-
served in a GaAs/AlGaAs 2DEG structures at 2K,
and quantum lifetimes have been determined by Din-
gle plots. The widths of the integer quantum Hall
plateaus have been obtained. The width is 0.0577 T
before illuminating and 0.0352 T after illuminating at
the ¢ = 6 plateau. It is found from the Dingle plots
that Quantum lifetimes related to all-angle scatter-

ing events reduce from 0.64 ps to 0.52 ps, and trans-
port lifetimes related to large-angle scattering events
increase from 42.3 ps to 67.8 ps. It is clear that small-
angle scattering can cause the variation of the widths
of the quantum Hall plateaus.
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Abstract
In oxyfluoride dass ceramics, the fluoride nanocrysa s doped with rare earth ions were di persed in an oxide network. The
emisson of EL®* has high sendtivity to different crystd field and is slitable for microstructure research in neoceraric gass.
Different oxyfluoride gass ceramics doped with ELP* were prepared. The variation of the emisson pectraof ELF* in different
dass cerarics corfirms the applicahility of ELf* ions in neoceraric gass as microprobe before and &ter heat trestment.
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Study of perdstent photoconductivity and subband electronic
properties of the two-dimensona electron gasin modulation
doped GaAs/Al GaAs structure -
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(Recaived 12 July 2005 ; revised manuscript received 3 Augug 2005)

Abdract

We obtained the high nohility of ok = 1. 78 X10° enf/V s in 9-coped GaAS/Al GaAs two-dimensiond dectron gas
(2DEQ dructures. After the sanple was illuminated by a light-emitting diode in megnetic fidlds up to 6 T a T=2K, we dd
observe the perdgent photoconductivity dfect and the dectron dendty increased obvioudy. The eectronic properties of 2DEG
have been sudied by Quantun Hall-efect and Shubnikov-de Haas (SdH) oscillation measurements. We found that the eectron
concentrations of two subbands increase smultaneity with the increasng tota eectron concentretion, and the eectron nobility
ad o increases obvioudy dter being illuminated. At the same time, we d< found that the dectronic quantum lifetime becomes
dorter , and a theoretica explunation is given through the widths of integral quantum Hall plateaus.

Keywor ds: two-dimengond dectron gas, quantum Hal dfect , SUH oscillations, pers gent photoconductivity
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Absgtract : The Raman scattering of 1nAs/ GaAs self-assembled quantum dots(QDs) with different InAs thicknesses is investi-
gated. The vibrational mode,which can be assigned to QD phonons,is observed. Analysis indicates that strain is the most im-
portant factor that influences the InAs QD frequency. As the InAs deposition thickness L increases,the InAslike LO mode
frequency decreases,which we attribute to the relaxation of the strain in the QD layer. In another sample with an InAlAs
strain buffer layer ,the AlAslike L O mode shows a blue shift as L increases. This also supports the proposed strain relaxation
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Sudy of Poly (3,4 Ethylene Dioxythiophene) : Pay ( Syrene Sulf onate)
by IrSitu Resonance Raman Spectr oscopy

LIN Hai-bo, XU Xiao-xuan" , WANGBin, WU Birrlin, XU Jialin, YU Gang, ZHAN G Currzhou
TEDA Applied Physics School , Nankai University, Tianjin 300457, China

Abgract Poly (3,4-ethylene dioxythiophene) (PEDOT) : Poly (styrene sulfonate) (PSS) has attracted a lot of interest for
application in organic electronics due to good stability and high electronic conductivity in its doped state. Indeed, thin layers of
PEDOT: PSS was regularly used in light emitting diodes (PL EDs) as hole injection and transportation layer. Here, Doping and
dedoping states of PEDOT : PSS were studied by absorbance spectra and Raman spectra. A new absorption band centered at 620
nm was observed on dedoped PEDOT: PSS. Consstently, Raman sgnas of dedoped PEDOT : PSS are resonantly intensfied
since the Raman excitation wavelength (633 nm) is set in the enhanced absorption band. So it gives a sensitive way to study the
doping and dedoping states of PEDOT : PSS. Furthermore, for the encapsulated polymer light-emitting diodes, Raman spectros-
copy is a powerful way to study the polymer layers insde the devices.

Keywords PEDOT:PSS; Resonant Raman spectra; Polymer light-emitting diodes
(Received Jan. 8, 2005; accepted Apr. 6, 2005)
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Table 1 Correlation coefficients of Raman spectra from mor-
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Morphologically Cell Extracellular Cell
Correlation derived fat cytoplasm matrix vs nucleus
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coefficients
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Confocal Raman Microspectr oscopic Sudy of Human Breast
Mor phological Eements

YU Ge', XU Xiao-xuar? , L U Shurhua® , ZHAN G Cunrzhou? , SON G Zeng-fu* , ZHAN G Chunrping’

1. Department of Mathematics and Physics, Beijing Institute of Petrochemical Techrnology , Beijing 102617, China
2. Photonics Center , Institute of Physics, Nanka University, Tianjin 300071, China

3. Tumour Hosptia , Tianjin Medical University, Tianjin 300060, China

4. College of Physics, Peking University, Beijing 100871, China

Abstract Breast tissue sections were examined by means of confocal Raman spectroscopy with an excitation wavelength of 633
nm. Acquired using a microscopic mapping approach with the sample volume of ~2 pm?® , these spectra were compared with the
ones of the commercially available actin, DNA , collagen (type 1), triolein etc. Some spectra were distinguished and identified
and characterize the morphological elements like cell cytoplasm, extracellular matrix etc. The cell nucleus spectrum was a o
obtained by K-means cluster analysis. The correlation analys s showed that the spectrum from a morphological element is highly
correlated with that from the corresponding purified chemical. The spectroscopic characterization of these morphological elements
was then investigated. This study is helpful to understanding the chemical/ morphological bass of the Raman spectrum and
designing the Raman microspectroscopic model of human breast tissue.

Keywords Confocal Raman microspectroscopy ; Breast ; Morphological elements; Mapping; K-means cluster analyss; Correla
tion analyiss
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Character isticsand development of optical pumping ver tical-external-cavity
arface-em ittihg lasers

ZHANG Guan-jiel, SHU Yong-munl, LU Ru-binl, SHU Qiangl, LIN Yaowangl’z, YAO Jiang-hongl,
WANG Zhan-guol'z, XU Jing-junl
(1 Key Labratory of Advanced Technique and Fabrication for W eak- ight Nonlinear Photonics M aterials of M inistry of
Education, Nankai University, Tianjin 300071, Ching 2 Key Laborabry of Samiconductor Materials Science, Institute of
Samiconductors, the Chinese A cademy of Sciences, Beijing 100083, China)

Abstract: The properties and advantages of optical pumping samiconductor vertical-external-cavity surface-emitting laser
(VECSH.) are introduced and the latest device development is damonstrated On the basis of these analyses, the gpplication

potential and technology direction in the areas are pointed out

Key words optoelectronics vertical-external-cavity surface-emitting laser (V ECSEL ) ; optical pumping, distributed B ragg

reflector (DBR) ; ultra short pulse
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W E XAFHRIMEMBE) AALERE MmAlAs B F BT THSBSTER . S8R TFHBRBEAFMM R TR
FEAMERER, 5P T InAlAs BF A RIBSRT BEMYSIHNEE, HAHET S RHERN RS ERNOE
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AFM and Raman Scattering Study of InAlAs Quantum Dots

ZHANG Guanjie!' Chen Yonghai® YAO Jianghong! SHU Qiang! LIU Rubin!
SHU Yongchun! WANG Zhanguo® XU Jingjun!
1 Key Laboratory of Advanced Technigque and Fabrication for Weak-light Nonlinear Photonics Materials,
Ministry of Education, Nankai University, Tianfin 300457
2 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors,
The Chinese Academy of Sciences, Beijing 100083

Abstract Raman scattering investigation of InAlAs/AlGaAs quantum dots (QDs) grown by molecular beam epitaxy
(MBE) is reported. The changes of QDs size, density and uniformity in their growing process from the AFM images
are analyzed together with the FWHM of Raman peaks. Moreover, the relation between the Raman lines and the
structure characteristics of QDs is studied. Comparing those samples with different InAlAs thicknesses, it is found
that the width/height ratio has some relation with the widening of GaAs-like LO and AlAs-like LO modes. It also con-
firms that this kind of phonons is Raman inactive in the Z(X, X)Z polarization.

Key words opto-electronics and laser technology; quantum dot; Raman scattering; phonon; intermixing effect
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