Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Preventing waves from spreading

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

March/April 2011

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

(日) (個) (目) (目) (目) (目)

Make it as simple as possible, but not simpler.

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

•
$$f(t, \mathbf{x}) \propto e^{i\mathbf{k} \cdot \mathbf{x}} e^{-i\omega t}$$

Plane waves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

waves from spreading Peter Hertel

Preventing

Waves

The Electro magnetic field

Waveguides

Read more

•
$$f(t, \mathbf{x}) \propto e^{\mathrm{i}\mathbf{k} \cdot \mathbf{x}} e^{-\mathrm{i}\omega t}$$

• wave equation yields $\omega = \omega(\mathbf{k})$

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- $f(t, \mathbf{x}) \propto e^{i\mathbf{k} \cdot \mathbf{x}} e^{-i\omega t}$
- wave equation yields $\omega = \omega(\mathbf{k})$
- sound in air: $\omega = v |\mathbf{k}|$

Preventing waves from spreading

Peter Hertel

Waves

- The Electromagnetic field
- Waveguides
- Read more

- $f(t, \mathbf{x}) \propto e^{i\mathbf{k} \cdot \mathbf{x}} e^{-i\omega t}$
- wave equation yields $\omega = \omega(\mathbf{k})$
- sound in air: $\omega = v |\mathbf{k}|$
- matter waves (particles): $\omega = \frac{\hbar}{2m} |{f k}|^2$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preventing waves from

spreading Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

- $f(t, \mathbf{x}) \propto e^{i\mathbf{k} \cdot \mathbf{x}} e^{-i\omega t}$
- wave equation yields $\omega = \omega(\mathbf{k})$
- sound in air: $\omega = v |\mathbf{k}|$
- matter waves (particles): $\omega = \frac{\hbar}{2m} |{f k}|^2$
- light in free space: $\omega = c \left| \mathbf{k} \right|$

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Wave packets

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

• Plane wave is an idealization

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Preventing waves from spreading

Peter Hertel

Waves

- The Electromagnetic field
- Waveguides
- Read more

- Plane wave is an idealization
- Superposition of plane waves, i. e. wave packets

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Waves

The Electro magnetic field

Preventing waves from

spreading Peter Hertel

- Waveguides
- Read more

- Plane wave is an idealization
- Superposition of plane waves, i. e. wave packets

•
$$f(t, \mathbf{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \phi(\mathbf{k}) e^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}} e^{-\mathrm{i}\omega(\mathbf{k})t}$$

Waves

The Electromagnetic field

Preventing waves from

spreading Peter Hertel

- Waveguides
- Read more

- Plane wave is an idealization
- Superposition of plane waves, i. e. wave packets

•
$$f(t, \mathbf{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \phi(\mathbf{k}) e^{\mathrm{i}\mathbf{k} \cdot \mathbf{x}} e^{-\mathrm{i}\omega(\mathbf{k})t}$$

•
$$\int \mathrm{d}^3 x |f(t,\mathbf{x})|^2 = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Waves

The Electromagnetic field

Preventing waves from

spreading Peter Hertel

- Waveguides
- Read more

- Plane wave is an idealization
- Superposition of plane waves, i. e. wave packets

•
$$f(t, \mathbf{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \phi(\mathbf{k}) e^{\mathrm{i}\mathbf{k} \cdot \mathbf{x}} e^{-\mathrm{i}\omega(\mathbf{k})t}$$

•
$$\int \mathrm{d}^3 x |f(t,\mathbf{x})|^2 = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2$$

• Integral over $|f(t, \mathbf{x})|^2$ does not depend on time

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Waves

The Electromagnetic field

Preventing waves from

spreading Peter Hertel

- Waveguides
- Read more

- Plane wave is an idealization
- Superposition of plane waves, i. e. wave packets

•
$$f(t, \mathbf{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \phi(\mathbf{k}) e^{\mathrm{i}\mathbf{k} \cdot \mathbf{x}} e^{-\mathrm{i}\omega(\mathbf{k})t}$$

•
$$\int \mathrm{d}^3 x |f(t,\mathbf{x})|^2 = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2$$

- Integral over $|f(t, \mathbf{x})|^2$ does not depend on time
- We normalize it to 1

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Location of the wave packet

•
$$\langle \mathbf{X} \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x} \, |f(t, \mathbf{x})|^2 =$$

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Location of the wave packet

•
$$\langle \mathbf{X} \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x} \, |f(t, \mathbf{x})|^2 =$$

• $\int \frac{\mathrm{d}^3 k}{(2\pi)^3} \, e^{\mathrm{i}\omega t} \, \phi^*(\mathbf{k}) \, \mathrm{i} \boldsymbol{\nabla}_k \phi(\mathbf{k}) \, e^{-\mathrm{i}\omega t} =$

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

Location of the wave packet

•
$$\langle \mathbf{X} \rangle_t = \int d^3 x \, \mathbf{x} \, |f(t, \mathbf{x})|^2 =$$

• $\int \frac{d^3 k}{(2\pi)^3} \, e^{i\omega t} \, \phi^*(\mathbf{k}) \, i \nabla_k \phi(\mathbf{k}) \, e^{-i\omega t} =$
• $\int \frac{d^3 k}{(2\pi)^3} \phi^*(\mathbf{k}) \, i \nabla_k \phi(\mathbf{k}) +$

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Location of the wave packet

•
$$\langle \mathbf{X} \rangle_t = \int d^3 x \, \mathbf{x} \, |f(t, \mathbf{x})|^2 =$$

• $\int \frac{d^3 k}{(2\pi)^3} e^{i\omega t} \phi^*(\mathbf{k}) i \nabla_k \phi(\mathbf{k}) e^{-i\omega t} =$
• $\int \frac{d^3 k}{(2\pi)^3} \phi^*(\mathbf{k}) i \nabla_k \phi(\mathbf{k}) +$
• $t \int \frac{d^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2 \nabla_k \omega(\mathbf{k})$

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

Location of the wave packet

•
$$\langle \mathbf{X} \rangle_t = \int d^3 x \, \mathbf{x} \, |f(t, \mathbf{x})|^2 =$$

• $\int \frac{d^3 k}{(2\pi)^3} e^{i\omega t} \phi^*(\mathbf{k}) i \nabla_k \phi(\mathbf{k}) e^{-i\omega t} =$
• $\int \frac{d^3 k}{(2\pi)^3} \phi^*(\mathbf{k}) i \nabla_k \phi(\mathbf{k}) +$
• $t \int \frac{d^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2 \nabla_k \omega(\mathbf{k})$
• $\langle \mathbf{X} \rangle_t = \langle \mathbf{X} \rangle_0 + \mathbf{v} \, t$

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Location of the wave packet

•
$$\langle \mathbf{X} \rangle_t = \int d^3 x \, \mathbf{x} \, |f(t, \mathbf{x})|^2 =$$

• $\int \frac{d^3 k}{(2\pi)^3} e^{i\omega t} \phi^*(\mathbf{k}) \, i \nabla_k \phi(\mathbf{k}) \, e^{-i\omega t} =$
• $\int \frac{d^3 k}{(2\pi)^3} \phi^*(\mathbf{k}) \, i \nabla_k \phi(\mathbf{k}) +$
• $t \int \frac{d^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2 \nabla_k \omega(\mathbf{k})$
• $\langle \mathbf{X} \rangle_t = \langle \mathbf{X} \rangle_0 + \mathbf{v} \, t$
• $\mathbf{v} = \langle \! \langle \nabla \omega \rangle \! \rangle = \int \frac{d^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2 \nabla_k \omega(\mathbf{k})$

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Location of the wave packet

•
$$\langle \mathbf{X} \rangle_t = \int d^3 x \, \mathbf{x} \, |f(t, \mathbf{x})|^2 =$$

• $\int \frac{d^3 k}{(2\pi)^3} e^{i\omega t} \phi^*(\mathbf{k}) \, i \nabla_k \phi(\mathbf{k}) \, e^{-i\omega t} =$
• $\int \frac{d^3 k}{(2\pi)^3} \phi^*(\mathbf{k}) \, i \nabla_k \phi(\mathbf{k}) +$
• $t \int \frac{d^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2 \nabla_k \omega(\mathbf{k})$
• $\langle \mathbf{X} \rangle_t = \langle \mathbf{X} \rangle_0 + \mathbf{v} \, t$
• $\mathbf{v} = \langle \langle \nabla \omega \rangle \rangle = \int \frac{d^3 k}{(2\pi)^3} |\phi(\mathbf{k})|^2 \nabla_k \omega(\mathbf{k})$

group velocity

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Spread of the wave packet

•
$$\langle \mathbf{X}^2 \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

Spread of the wave packet

•
$$\langle \mathbf{X}^2 \rangle_t = \int d^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

• spread $\delta X(t) = \sqrt{\langle \mathbf{X}^2 \rangle_t - \langle \mathbf{X} \rangle_t^2}$

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

Spread of the wave packet

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\langle \mathbf{X}^2 \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

- spread $\delta X(t) = \sqrt{\langle \mathbf{X}^2 \rangle_t \langle \mathbf{X} \rangle_t^2}$
- by a similar calculation as before:

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides

Read more

Spread of the wave packet

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$\langle \mathbf{X}^2 \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

• spread
$$\delta X(t) = \sqrt{\langle \mathbf{X}^2 \rangle_t - \langle \mathbf{X} \rangle_t^2}$$

• by a similar calculation as before:

•
$$\langle \mathbf{X}^2 \rangle_t = \cdots + t^2 \langle \langle (\boldsymbol{\nabla} \omega)^2 \rangle \rangle$$

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

Spread of the wave packet

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$\langle \mathbf{X}^2 \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

• spread
$$\delta X(t) = \sqrt{\langle \mathbf{X}^2 \rangle_t - \langle \mathbf{X} \rangle_t^2}$$

• by a similar calculation as before:

•
$$\langle \mathbf{X}^2 \rangle_t = \cdots + t^2 \langle \langle (\boldsymbol{\nabla} \omega)^2 \rangle \rangle$$

• for large times t the spread grows as

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

Spread of the wave packet

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$\langle \mathbf{X}^2 \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

• spread
$$\delta X(t) = \sqrt{\langle \mathbf{X}^2 \rangle_t - \langle \mathbf{X} \rangle_t^2}$$

• by a similar calculation as before:

•
$$\langle \mathbf{X}^2 \rangle_t = \cdots + t^2 \langle \langle (\boldsymbol{\nabla} \omega)^2 \rangle \rangle$$

• for large times t the spread grows as

•
$$\delta X(t) = |t| \sqrt{\langle\!\langle (oldsymbol{\nabla} \omega)^2
angle - \langle\!\langle oldsymbol{\nabla} \omega
angle
angle^2}$$

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

Spread of the wave packet

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$\langle \mathbf{X}^2 \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

• spread
$$\delta X(t) = \sqrt{\langle \mathbf{X}^2 \rangle_t - \langle \mathbf{X} \rangle_t^2}$$

• by a similar calculation as before:

•
$$\langle \mathbf{X}^2 \rangle_t = \cdots + t^2 \langle \langle (\boldsymbol{\nabla} \omega)^2 \rangle \rangle$$

• for large times t the spread grows as

•
$$\delta X(t) = |t| \sqrt{\langle\!\langle (oldsymbol{\nabla} \omega)^2
angle - \langle\!\langle oldsymbol{\nabla} \omega
angle
angle^2}$$

• the argument of the square root cannot be negative

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

Spread of the wave packet

•
$$\langle \mathbf{X}^2 \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

• spread
$$\delta X(t) = \sqrt{\langle \mathbf{X}^2 \rangle_t - \langle \mathbf{X} \rangle_t^2}$$

• by a similar calculation as before:

•
$$\langle \mathbf{X}^2 \rangle_t = \cdots + t^2 \langle \langle (\boldsymbol{\nabla} \omega)^2 \rangle \rangle$$

- for large times t the spread grows as
- $\delta X(t) = |t| \sqrt{\langle\!\langle (\boldsymbol{\nabla} \omega)^2 \rangle\!\rangle \langle\!\langle \boldsymbol{\nabla} \omega \rangle\!\rangle^2}$
- the argument of the square root cannot be negative
- Wave packets finally spread out...

Peter Hertel

Waves

- The Electro magnetic field
- Waveguides
- Read more

Spread of the wave packet

•
$$\langle \mathbf{X}^2 \rangle_t = \int \mathrm{d}^3 x \, \mathbf{x}^2 \, |f(t, \mathbf{x})|^2$$

• spread
$$\delta X(t) = \sqrt{\langle \mathbf{X}^2 \rangle_t - \langle \mathbf{X} \rangle_t^2}$$

• by a similar calculation as before:

•
$$\langle \mathbf{X}^2 \rangle_t = \cdots + t^2 \langle \langle (\boldsymbol{\nabla} \omega)^2 \rangle \rangle$$

- for large times t the spread grows as
- $\delta X(t) = |t| \sqrt{\langle\!\langle (\boldsymbol{\nabla} \omega)^2 \rangle\!\rangle \langle\!\langle \boldsymbol{\nabla} \omega \rangle\!\rangle^2}$
- the argument of the square root cannot be negative
- Wave packets finally spread out...
- ... if the medium is homogeneous.

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

• The electromagnetic field is defined by its action on charged particles

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

• The electromagnetic field is defined by its action on charged particles

$$\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$$

.

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

- The electromagnetic field is defined by its action on charged particles
- $\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$
- location x, velocity v, momentum p

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

- The electromagnetic field is defined by its action on charged particles
- $\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$
- location \mathbf{x} , velocity \mathbf{v} , momentum \mathbf{p}
- charge q, electric field strength **E**, magnetic induction **B**

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

- The electromagnetic field is defined by its action on charged particles
- $\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$
- location \mathbf{x} , velocity \mathbf{v} , momentum \mathbf{p}
- charge q, electric field strength **E**, magnetic induction **B**
- The electromagnetic field is generated by a distribution of charged particles

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

- The electromagnetic field is defined by its action on charged particles
- $\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$
- location \mathbf{x} , velocity \mathbf{v} , momentum \mathbf{p}
- charge q, electric field strength **E**, magnetic induction **B**
- The electromagnetic field is generated by a distribution of charged particles
- charge density ρ , current density **j**

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

- The electromagnetic field is defined by its action on charged particles
- $\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$
- location \mathbf{x} , velocity \mathbf{v} , momentum \mathbf{p}
- charge q, electric field strength **E**, magnetic induction **B**
- The electromagnetic field is generated by a distribution of charged particles
- charge density ρ , current density **j**
- Maxwell's equations

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

- The electromagnetic field is defined by its action on charged particles
- $\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$
- location \mathbf{x} , velocity \mathbf{v} , momentum \mathbf{p}
- charge q, electric field strength **E**, magnetic induction **B**
- The electromagnetic field is generated by a distribution of charged particles
- charge density ρ , current density **j**
- Maxwell's equations
- $\operatorname{div} \mathbf{D} = \rho$, $\operatorname{div} \mathbf{B} = 0$

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

- The electromagnetic field is defined by its action on charged particles
- $\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$
- location \mathbf{x} , velocity \mathbf{v} , momentum \mathbf{p}
- charge q, electric field strength **E**, magnetic induction **B**
- The electromagnetic field is generated by a distribution of charged particles
- charge density ρ , current density **j**
- Maxwell's equations
- $\operatorname{div} \mathbf{D} = \rho$, $\operatorname{div} \mathbf{B} = 0$
- $\operatorname{curl} \mathbf{H} = \mathbf{j} + \dot{\mathbf{D}}, \operatorname{curl} \mathbf{E} = -\dot{\mathbf{B}}$

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Electromagnetic field

- The electromagnetic field is defined by its action on charged particles
- $\dot{\mathbf{p}} = q\{\mathbf{E} + \mathbf{v} \times \mathbf{B}\}$
- location \mathbf{x} , velocity \mathbf{v} , momentum \mathbf{p}
- charge q, electric field strength **E**, magnetic induction **B**
- The electromagnetic field is generated by a distribution of charged particles
- charge density ρ , current density **j**
- Maxwell's equations
- div $\mathbf{D} = \rho$, div $\mathbf{B} = 0$
- $\operatorname{curl} \mathbf{H} = \mathbf{j} + \dot{\mathbf{D}}, \operatorname{curl} \mathbf{E} = -\dot{\mathbf{B}}$
- linear Medium: $\mathbf{D} = \epsilon \epsilon_0 \mathbf{E}, \ \mathbf{B} = \mu \mu_0 \mathbf{H}$

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

James Clerk Maxwell, 1831-1879

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Optics

(ロ)、

• no charges, no currents:
$$\rho = 0$$
, $\mathbf{j} = 0$

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho=$ 0, $\mathbf{j}=$ 0
- no magnetic properties: $\mu=1$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho=$ 0, $\mathbf{j}=$ 0
- no magnetic properties: $\mu=1$
- need to study fields $\propto \, e^{-{
 m i}\omega t}$ only

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho = 0$, $\mathbf{j} = 0$
- no magnetic properties: $\mu=1$
- need to study fields $\propto \, e^{-{
 m i}\omega t}$ only
- $\nabla \epsilon \mathbf{E} = 0$, div $\mathbf{H} = 0$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho=$ 0, $\mathbf{j}=$ 0
- no magnetic properties: $\mu=1$
- need to study fields $\propto e^{-\mathrm{i}\omega t}$ only
- $\nabla \epsilon \mathbf{E} = 0$, div $\mathbf{H} = 0$
- curl $\mathbf{H} = -\mathrm{i}\omega\epsilon_0 \,\epsilon \,\mathbf{E}$, curl $\mathbf{E} = \mathrm{i}\omega\mu_0 \mathbf{H}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho=$ 0, $\mathbf{j}=$ 0
- no magnetic properties: $\mu=1$
- need to study fields $\propto e^{-\mathrm{i}\omega t}$ only
- $\nabla \epsilon \mathbf{E} = 0$, div $\mathbf{H} = 0$
- curl $\mathbf{H} = -\mathrm{i}\omega\epsilon_0\,\epsilon\,\mathbf{E}$, curl $\mathbf{E} = \mathrm{i}\omega\mu_0\mathbf{H}$
- With $\epsilon_0 \mu_0 c^2 = 1$ and $k_0 = \omega/c$:

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho=$ 0, $\mathbf{j}=$ 0
- no magnetic properties: $\mu=1$
- need to study fields $\propto e^{-\mathrm{i}\omega t}$ only
- $\nabla \epsilon \mathbf{E} = 0$, div $\mathbf{H} = 0$
- curl $\mathbf{H} = -\mathrm{i}\omega\epsilon_0 \,\epsilon \,\mathbf{E}$, curl $\mathbf{E} = \mathrm{i}\omega\mu_0 \mathbf{H}$
- With $\epsilon_0 \mu_0 c^2 = 1$ and $k_0 = \omega/c$:
- curl curl $\mathbf{E} = k_0^2 \epsilon \mathbf{E}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho=$ 0, $\mathbf{j}=$ 0
- no magnetic properties: $\mu=1$
- need to study fields $\propto e^{-\mathrm{i}\omega t}$ only
- $\nabla \epsilon \mathbf{E} = 0$, div $\mathbf{H} = 0$
- curl $\mathbf{H} = -\mathrm{i}\omega\epsilon_0 \,\epsilon \,\mathbf{E}$, curl $\mathbf{E} = \mathrm{i}\omega\mu_0 \mathbf{H}$
- With $\epsilon_0 \mu_0 c^2 = 1$ and $k_0 = \omega/c$:
- curl curl $\mathbf{E} = k_0^2 \epsilon \mathbf{E}$
- equivalent

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho=$ 0, $\mathbf{j}=$ 0
- no magnetic properties: $\mu=1$
- need to study fields $\propto e^{-\mathrm{i}\omega t}$ only
- $\nabla \epsilon \mathbf{E} = 0$, div $\mathbf{H} = 0$
- curl $\mathbf{H} = -\mathrm{i}\omega\epsilon_0 \,\epsilon\,\mathbf{E}$, curl $\mathbf{E} = \mathrm{i}\omega\mu_0\mathbf{H}$
- With $\epsilon_0 \mu_0 c^2 = 1$ and $k_0 = \omega/c$:
- curl curl $\mathbf{E} = k_0^2 \epsilon \mathbf{E}$
- equivalent
- curl ϵ^{-1} curl $\mathbf{H} = k_0^2 \mathbf{H}$

Preventing waves from spreading

Peter Hertel

Waves

The Electromagnetic field

Waveguides

- no charges, no currents: $\rho = 0$, $\mathbf{j} = 0$
- no magnetic properties: $\mu=1$
- need to study fields $\propto e^{-\mathrm{i}\omega t}$ only
- $\nabla \epsilon \mathbf{E} = 0$, div $\mathbf{H} = 0$
- curl $\mathbf{H} = -\mathrm{i}\omega\epsilon_0 \,\epsilon \,\mathbf{E}$, curl $\mathbf{E} = \mathrm{i}\omega\mu_0 \mathbf{H}$
- With $\epsilon_0 \mu_0 c^2 = 1$ and $k_0 = \omega/c$:
- curl curl $\mathbf{E} = k_0^2 \epsilon \mathbf{E}$
- equivalent
- curl ϵ^{-1} curl H = k_0^2 H
- $\epsilon\,{\bf E}$ and ${\bf H}$ are automatically divergence free

Peter Hertel

Waves

The Electro magnetic field

Waveguides

Read more

• Spreading of light is unavoidable if the medium is homogeneous

Waveguides

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Waves

The Electro magnetic field

Preventing waves from

spreading Peter Hertel

Waveguides

- Spreading of light is unavoidable if the medium is homogeneous
- Therefore, the medium must be inhomogeneous if light is to be guided

Waves

The Electro magnetic field

Preventing waves from

spreading Peter Hertel

Waveguides

- Spreading of light is unavoidable if the medium is homogeneous
- Therefore, the medium must be inhomogeneous if light is to be guided
- permittivity profile $\epsilon = \epsilon(\mathbf{x})$

Waves

The Electromagnetic field

Preventing waves from

spreading Peter Hertel

Waveguides

- Spreading of light is unavoidable if the medium is homogeneous
- Therefore, the medium must be inhomogeneous if light is to be guided
- permittivity profile $\epsilon = \epsilon(\mathbf{x})$
- Non-constant imaginary part: microwave guides, coaxial cables

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Waves

The Electromagnetic field

Preventing waves from

spreading Peter Hertel

Waveguides

- Spreading of light is unavoidable if the medium is homogeneous
- Therefore, the medium must be inhomogeneous if light is to be guided
- permittivity profile $\epsilon = \epsilon(\mathbf{x})$
- Non-constant imaginary part: microwave guides, coaxial cables
- ϵ real and non-constant: dielectric waveguides

Peter Hertel

Waves

The Electromagnetic field

Waveguides

Read more

Read more

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Lecture notes are deposited at ftp://202.113.31.42

waves from spreading Peter Hertel

Preventing

Waves

The Electromagnetic field

Waveguides

- Lecture notes are deposited at ftp://202.113.31.42
- Change directory to /temp/peter.hertel/2011-03

waves from spreading Peter Hertel

Preventing

Waves

The Electro magnetic field

Waveguides

- Lecture notes are deposited at ftp://202.113.31.42
 - Change directory to /temp/peter.hertel/2011-03
 - dwg.pdf Dielectric Waveguides

spreading Peter Hertel

Preventing waves from

Waves

The Electro magnetic field

Waveguides

- Lecture notes are deposited at ftp://202.113.31.42
 - Change directory to /temp/peter.hertel/2011-03
 - dwg.pdf Dielectric Waveguides
 - basics.pdf this lecture

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

spreading Peter Hertel

Preventing waves from

Waves

The Electromagnetic field

Waveguides

- Lecture notes are deposited at ftp://202.113.31.42
 - Change directory to /temp/peter.hertel/2011-03
 - dwg.pdf Dielectric Waveguides
 - basics.pdf this lecture
 - planar.pdf next lecture