Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples

Natural units

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

October/November 2011

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Overview

Peter Hertel

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

• Normal matter

Overview

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Normal matter
- Atomic units

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- Normal matter
- Atomic units
- SI to AU conversion

Normal matter

Peter Hertel	

Normal matter

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples • normal matter is governed by electrostatic forces and non-relativistic quantum mechanics

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- normal matter is governed by electrostatic forces and non-relativistic quantum mechanics
- heavy nuclei are surrounded by electrons neutral atoms, molecules, liquids and solids

Natural units

Peter Hertel

Overview

- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- normal matter is governed by electrostatic forces and non-relativistic quantum mechanics
- heavy nuclei are surrounded by electrons neutral atoms, molecules, liquids and solids
- Planck's constant

Natural units

Peter Hertel

Overview

- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- normal matter is governed by electrostatic forces and non-relativistic quantum mechanics
- heavy nuclei are surrounded by electrons neutral atoms, molecules, liquids and solids
- Planck's constant
- unit charge *e*

Natural units

Peter Hertel

Overview

- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- normal matter is governed by electrostatic forces and non-relativistic quantum mechanics
- heavy nuclei are surrounded by electrons neutral atoms, molecules, liquids and solids
- Planck's constant
- unit charge *e*
- electron mass *m*

Natural units

Peter Hertel

Overview

- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- normal matter is governed by electrostatic forces and non-relativistic quantum mechanics
- heavy nuclei are surrounded by electrons neutral atoms, molecules, liquids and solids
- Planck's constant
- unit charge *e*
- electron mass m
- $4\pi\epsilon_0$ from Coulomb's law

Natural units

Peter Hertel

Overview

- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- normal matter is governed by electrostatic forces and non-relativistic quantum mechanics
- heavy nuclei are surrounded by electrons neutral atoms, molecules, liquids and solids
- Planck's constant <u>ħ</u>
- unit charge *e*
- electron mass m
- $4\pi\epsilon_0$ from Coulomb's law
- typical values for normal matter are reasonable numbers

Natural units

Peter Hertel

Overview

- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- normal matter is governed by electrostatic forces and non-relativistic quantum mechanics
- heavy nuclei are surrounded by electrons neutral atoms, molecules, liquids and solids
- Planck's constant
- unit charge e
- electron mass m
- $4\pi\epsilon_0$ from Coulomb's law
- typical values for normal matter are reasonable numbers
- times products of powers of these constants

Constants of nature

i eter merter

Constants of nature

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples • today, the *Système international d'unités* (SI) is in common use, in particular in science and engineering

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- today, the *Système international d'unités* (SI) is in common use, in particular in science and engineering
- also called MKSA

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hertel

Overview

- Normal matter
- Atomic units

Length and energy

Electric an magnetic fields

More examples

- today, the *Système international d'unités* (SI) is in common use, in particular in science and engineering
- also called MKSA
- MKSA = meter (m), kilogram (kg), second (s) and ampere (A)

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

• today, the *Système international d'unités* (SI) is in common use, in particular in science and engineering

Constants of nature

- also called MKSA
- MKSA = meter (m), kilogram (kg), second (s) and ampere (A)
- other SI units are derived from it, like volt (V)

Peter Hertel

Overview

- Normal matter
- Atomic units

Length and energy

Electric an magnetic fields

More examples • today, the *Système international d'unités* (SI) is in common use, in particular in science and engineering

Constants of nature

- also called MKSA
- MKSA = meter (m), kilogram (kg), second (s) and ampere (A)
- other SI units are derived from it, like volt (V)
- $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$

Constants of nature

Peter Hertel

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- today, the *Système international d'unités* (SI) is in common use, in particular in science and engineering
- also called MKSA
- MKSA = meter (m), kilogram (kg), second (s) and ampere (A)
- other SI units are derived from it, like volt (V)
- $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$
- $e = 1.602177 \times 10^{-19} \text{ A s}$

Constants of nature

Natural units

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- today, the *Système international d'unités* (SI) is in common use, in particular in science and engineering
- also called MKSA
- MKSA = meter (m), kilogram (kg), second (s) and ampere (A)
- other SI units are derived from it, like volt (V)
- $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$
- $e = 1.602177 \times 10^{-19} \text{ A s}$
- $m = 9.10938 \times 10^{-31} \text{ kg}$

Peter Hertel

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- today, the *Système international d'unités* (SI) is in common use, in particular in science and engineering
- also called MKSA
- MKSA = meter (m), kilogram (kg), second (s) and ampere (A)
- other SI units are derived from it, like volt (V)
- $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$
- $e = 1.602177 \times 10^{-19} \text{ A s}$
- $m = 9.10938 \times 10^{-31} \text{ kg}$
- $4\pi\epsilon_0 = 1.112650 \times 10^{-10} \text{ kg}^{-1} \text{ m}^{-3} \text{ A}^2$

Powers of MKSA

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

• $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$

Powers of MKSA

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples

- $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$
- $e = 1.602177 \times 10^{-19} \text{ A s}$

Powers of MKSA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Peter Hertel

Overview

Normal matter

Atomic units

- Length and energy
- Electric an magnetic fields
- More examples

• $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$

•
$$e = 1.602177 \times 10^{-19} \text{ A s}$$

• $m = 9.10938 \times 10^{-31} \text{ kg}$

Powers of MKSA

Powers of MKSA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 - のへで

Natural units

Peter Hertel

Overview

Normal matter

Atomic units

- Length and energy
- Electric an magnetic fields
- More examples

• $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$

•
$$e = 1.602177 \times 10^{-19} \text{ A s}$$

- $m = 9.10938 \times 10^{-31} \text{ kg}$
- $4\pi\epsilon_0 = 1.112650 \times 10^{-10} \text{ kg}^{-1} \text{ m}^{-3} \text{ A}^2$

Powers of MKSA

Natural units

Peter Hertel

Overview

Normal matter

Atomic units

- Length and energy
- Electric and magnetic fields
- More examples

• $\hbar = 1.054572 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$

•
$$e = 1.602177 \times 10^{-19} \text{ A s}$$

- $m = 9.10938 \times 10^{-31} \text{ kg}$
- $4\pi\epsilon_0 = 1.112650 \times 10^{-10} \text{ kg}^{-1} \text{ m}^{-3} \text{ A}^2$
- the powers of SI units

	m	kg	S	Α
ħ	2	1	-1	0
e	0	0	1	1
m	0	1	0	0
$4\pi\epsilon_0$	-3	-1	4	2

Powers of natural constants

Peter Hertel
i didi i idici di

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

Powers of natural constants

• the former 4×4 matrix can be inverted

Powers of natural constants

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

- the former 4×4 matrix can be inverted
- SI units can be expressed as a product of powers of the involved constants of nature

	ħ	e	m	$4\pi\epsilon_0$
m	2	-2	-1	1
kg	0	0	1	0
s	3	-4	-1	2
A	-3	5	1	-2

Powers of natural constants

- the former 4×4 matrix can be inverted
- SI units can be expressed as a product of powers of the involved constants of nature

	ħ	e	m	$4\pi\epsilon_0$
m	2	-2	-1	1
kg	0	0	1	0
s	3	-4	-1	2
A	-3	5	1	-2

• read: s = number multiplied by $\hbar^3 e^{-4} m^{-1} (4\pi\epsilon_0)^2$ etc.

Powers of natural constants

- the former 4×4 matrix can be inverted
- SI units can be expressed as a product of powers of the involved constants of nature

	ħ	e	m	$4\pi\epsilon_0$
m	2	-2	-1	1
kg	0	0	1	0
s	3	-4	-1	2
A	-3	5	1	-2

- read: s = number multiplied by $\hbar^3 e^{-4} m^{-1} (4\pi\epsilon_0)^2$ etc.
- find out number and exponents for arbitrary SI unit

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

```
function [value,power]=atomic_unit(si)
val=[1.05457e-34,1.60218e-19,9.10938e-31,4*pi*8.85419
dim=[2 1 -1 0; 0 0 1 1; 0 1 0 0; -3 -1 4 2];
mid=round(inv(dim));
power=si*mid;
value=prod(val.^power);
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

```
>> length = [0 1 0 0];
>> length = [1 0 0 0];
>> [astar,apow]=atomic_unit(length);
>> astar
    5.2917e-11
>> apow
    2 -2 -1 1
```

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples
e. g. atomic length unit

i cter herter

・ロト・(四)・(日)・(日)・(日)・

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples

e. g. atomic length unit

• recall length=[1 0 0 0]

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

e.g. atomic length unit

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- recall length=[1 0 0 0]
- recall [astar,apow]=atomic_unit(length)

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

e. g. atomic length unit

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- recall length=[1 0 0 0]
- recall [astar,apow]=atomic_unit(length)
- recall astar = 5.2971e-11

Overview

- Normal matter
- Atomic units

Length and energy

Electric an magnetic fields

More examples

• recall length=[1 0 0 0]

- recall [astar,apow]=atomic_unit(length)
- recall astar = 5.2971e-11
- recall apow = [2 -2 -1 1]

e. g. atomic length unit

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Overview
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- recall length=[1 0 0 0]
- recall [astar,apow]=atomic_unit(length)
- recall astar = 5.2971e-11
- recall apow = [2 -2 -1 1]
- we have just calculated the atomic unit of length

e. g. atomic length unit

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Overview
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- recall length=[1 0 0 0]
- recall [astar,apow]=atomic_unit(length)
- recall astar = 5.2971e-11
- recall apow = [2 -2 -1 1]
- · we have just calculated the atomic unit of length
- i. e. Bohr's radius

$$a_* = \frac{4\pi\epsilon_0\hbar^2}{me^2} = 5.2917 \times 10^{-11} \text{ m}$$

e. g. atomic length unit

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bohr's radius

reter Herter

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples • Schrödinger equation for hydrogen atom

$$-\frac{\hbar^2}{2m}\Delta\phi + \frac{1}{4\pi\epsilon_0}\frac{-e^2}{r}\phi = E\phi$$

Bohr's radius

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples • Schrödinger equation for hydrogen atom

$$-\frac{\hbar^2}{2m}\Delta\phi+\frac{1}{4\pi\epsilon_0}\frac{-e^2}{r}\phi=E\phi$$

• in atomic units

$$-\frac{1}{2}\Delta\phi - \frac{1}{r}\phi = E\phi$$

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples • Schrödinger equation for hydrogen atom

Bohr's radius

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$-\frac{\hbar^2}{2m}\Delta\phi+\frac{1}{4\pi\epsilon_0}\frac{-e^2}{r}\phi=E\phi$$

• in atomic units

$$-\frac{1}{2}\Delta\phi - \frac{1}{r}\phi = E\phi$$

ground state

$$\phi \propto e^{-r}$$
 with $E = -\frac{1}{2}$

Peter Hertel

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

Schrödinger equation for hydrogen atom

$$-\frac{\hbar^2}{2m}\Delta\phi+\frac{1}{4\pi\epsilon_0}\frac{-e^2}{r}\phi=E\phi$$

• in atomic units

$$-\frac{1}{2}\Delta\phi - \frac{1}{r}\phi = E\phi$$

ground state

$$\phi \propto e^{-r}$$
 with $E = -\frac{1}{2}$

• radius

$$\langle R \rangle = \frac{\int_0^\infty \mathrm{d}r \, r^2 \, e^{-r} \, r \, e^{-r}}{\int_0^\infty \mathrm{d}r \, r^2 \, e^{-r} \, 1 \, e^{-r}} = 1$$

Bohr's radius

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Peter Hertel

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

Schrödinger equation for hydrogen atom

$$-\frac{\hbar^2}{2m}\Delta\phi + \frac{1}{4\pi\epsilon_0}\frac{-e^2}{r}\phi = E\phi$$

• in atomic units

$$-\frac{1}{2}\Delta\phi - \frac{1}{r}\phi = E\phi$$

ground state

$$\phi \propto e^{-r}$$
 with $E = -\frac{1}{2}$

radius

$$\langle R \rangle = \frac{\int_0^\infty dr \, r^2 \, e^{-r} \, r \, e^{-r}}{\int_0^\infty dr \, r^2 \, e^{-r} \, 1 \, e^{-r}} = 1$$

• Bohr's result

$$\langle R \rangle = a_* = \frac{4\pi\epsilon_0\hbar^2}{me^2}$$

Bohr's radius

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Hartree

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples

• MKSA for energy is $[2 \ 1 \ -2 \ 0]$

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- MKSA for energy is [2 1 -2 0]
- [Estar, Epow] = atomic_unit(energy)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Overview Normal ma
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- MKSA for energy is [2 1 -2 0]
- [Estar, Epow] = atomic_unit(energy)
- $E_* = 4.3598 \times 10^{-18} \text{ J} = 27.21 \text{ eV}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Overview Normal ma
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- MKSA for energy is [2 1 -2 0]
- [Estar, Epow] = atomic_unit(energy)
- $E_* = 4.3598 \times 10^{-18} \text{ J} = 27.21 \text{ eV}$
- atomic energy unit Hartree

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Overview Normal mat
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- MKSA for energy is $[2 \ 1 \ -2 \ 0]$
- [Estar, Epow] = atomic_unit(energy)
- $E_* = 4.3598 \times 10^{-18} \text{ J} = 27.21 \text{ eV}$
- atomic energy unit Hartree
- H atom ground state energy is E = -13.6 eV

- Overview Normal mat
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- MKSA for energy is [2 1 -2 0]
- [Estar, Epow] = atomic_unit(energy)
- $E_* = 4.3598 \times 10^{-18} \text{ J} = 27.21 \text{ eV}$
- atomic energy unit Hartree
- H atom ground state energy is E = -13.6 eV
- photon energies are in the eV range

- Overview Normal matt
- Length and energy
- Electric and magnetic fields
- More examples

- MKSA for energy is $[2 \ 1 \ -2 \ 0]$
- [Estar, Epow] = atomic_unit(energy)
- $E_* = 4.3598 \times 10^{-18} \text{ J} = 27.21 \text{ eV}$
- atomic energy unit Hartree
- H atom ground state energy is E = -13.6 eV
- photon energies are in the eV range
- He-Ne laser: $\lambda = 633 \text{ nm}$

- Overview Normal matt
- Length and energy
- Electric and magnetic fields
- More examples

- MKSA for energy is $[2 \ 1 \ -2 \ 0]$
- [Estar, Epow] = atomic_unit(energy)
- $E_* = 4.3598 \times 10^{-18} \text{ J} = 27.21 \text{ eV}$
- atomic energy unit Hartree
- H atom ground state energy is E = -13.6 eV
- photon energies are in the eV range
- He-Ne laser: $\lambda = 633 \text{ nm}$
- $\hbar\omega = 0.072 E_* = 1.96 \text{ eV}$

Electric field strength

Peter Hertei
magnetic fields

・ロト ・雪 ・ 雪 ト ・雪 ・ 今々で

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric an magnetic fields

More examples

Electric field strength

• voltage=[2 1 -3 -1]

Peter Hertel

- Overview Normal ma
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

Electric field strength

- voltage=[2 1 -3 -1]
- el_field_str=[1 1 -3 -1]

Peter Hertel

- Overview Normal mat Atomic unit
- Length and energy

Electric and magnetic fields

More examples

Electric field strength

(日) (日) (日) (日) (日) (日) (日) (日)

- voltage=[2 1 -3 -1]
- el_field_str=[1 1 -3 -1]
- the atomic (natural) unit of electric field strength is $\mathcal{E}_* = \frac{m^2 e^5}{(4\pi\epsilon_0)^3 \hbar^4} = 5.1423 \times 10^{11} \text{ V m}^{-1}$

Peter Hertel

- Overview Normal mat Atomic unit:
- Length and energy
- Electric and magnetic fields
- More examples

Electric field strength

- voltage=[2 1 -3 -1]
- el_field_str=[1 1 -3 -1]
- the atomic (natural) unit of electric field strength is $\mathcal{E}_* = \frac{m^2 e^5}{(4\pi\epsilon_0)^3\hbar^4} = 5.1423 \times 10^{11} \text{ V m}^{-1}$
- Ohms law, Pockels effect, Starck effect

Peter Hertel

- Overview Normal mat Atomic unit:
- Length and energy
- Electric and magnetic fields
- More examples

Electric field strength

- voltage=[2 1 -3 -1]
- el_field_str=[1 1 -3 -1]
- the atomic (natural) unit of electric field strength is $\mathcal{E}_* = \frac{m^2 e^5}{(4\pi\epsilon_0)^3\hbar^4} = 5.1423 \times 10^{11} \text{ V m}^{-1}$
- Ohms law, Pockels effect, Starck effect
- external field strength is always very small

Magnetic induction

Poter Hertel		Ŭ
i eter merter		

Peter Hertel

Overview Normal m

Atomic units

Length and energy

Electric and magnetic fields

More examples

• induction=[0 1 -2 -1]

Magnetic induction

- Overview Normal mat Atomic unit
- energy

Electric and magnetic fields

More examples

Magnetic induction

(日) (日) (日) (日) (日) (日) (日) (日)

- induction=[0 1 -2 -1]
- the atomic (natural) unit of magnetic induction is $\mathcal{B}_* = \frac{m^2 e^3}{(4\pi\epsilon_0)^2\hbar^3} = 2.3505 \times 10^5 \text{ T}$

- Overview Normal mat Atomic unit:
- Length an energy
- Electric and magnetic fields
- More examples

Magnetic induction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- induction=[0 1 -2 -1]
- the atomic (natural) unit of magnetic induction is $\mathcal{R} = \frac{m^2 e^3}{m^2 e^3} = 2.2505 \times 10^5 \text{ T}$

$$\mathcal{B}_* = \frac{1}{(4\pi\epsilon_0)^2\hbar^3} = 2.3505 \times 10^5 \text{ T}$$

• Faraday effect, Hall effect ...

- Overview Normal mat Atomic unit:
- energy
- Electric and magnetic fields
- More examples

- induction=[0 1 -2 -1]
- the atomic (natural) unit of magnetic induction is $\mathcal{B}_* = \frac{m^2 e^3}{(4\pi\epsilon_0)^2\hbar^3} = 2.3505 \times 10^5 \text{ T}$
- Faraday effect, Hall effect ...
- external field induction is always very small

Mass density

i eter merter

くりょう 山田 (山田) (山田) (日)

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

• rho=[-3 1 0 0]

Mass density

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

Mass density

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- rho=[-3 1 0 0]
- [rhoval,rhopow]=atomic_unit(rho)

Natural units

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- rho=[-3 1 0 0]
- [rhoval,rhopow]=atomic_unit(rho)
- rhoval = 6.174

Mass density

Natural units

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- rho=[-3 1 0 0]
- [rhoval,rhopow]=atomic_unit(rho)
- rhoval = 6.174
- rhopow=[-6 6 4 -3]

Mass density

Natural units

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- rho=[-3 1 0 0]
- [rhoval,rhopow]=atomic_unit(rho)
- rhoval = 6.174
- rhopow=[-6 6 4 -3]

$$\varrho_* = \frac{m^4 e^6}{(4\pi\epsilon_0)^3\hbar^6} = \frac{m}{a_*^3} = 6.147 \text{ kg m}^{-3}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Natural units

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- rho=[-3 1 0 0]
- [rhoval,rhopow]=atomic_unit(rho)
- rhoval = 6.174
- rhopow=[-6 6 4 -3]

$$\varrho_* = \frac{m^4 e^6}{(4\pi\epsilon_0)^3\hbar^6} = \frac{m}{a_*^3} = 6.147 \text{ kg m}^{-3}$$

 mass is mass of nucleons, therefore must be multiplied by approximately 4000

Light velocity

Deter Hentel			Ŭ	
Peter Herter				

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

• velocity=[1 0 -1 0]

Light velocity

Peter Hertel

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- velocity=[1 0 -1 0]
- atomic unit of velocity is

$$v_* = \frac{e^2}{4\pi\epsilon_0\hbar} = 2.1877 \times 10^6 \text{ m s}^{-1}$$

Light velocity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- velocity=[1 0 -1 0]
- atomic unit of velocity is

$$v_* = \frac{e^2}{4\pi\epsilon_0\hbar} = 2.1877 \times 10^6 \text{ m s}^{-1}$$

• velocity of light is $c = \alpha^{-1} v_*$

Light velocity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- velocity=[1 0 -1 0]
- atomic unit of velocity is

$$v_* = \frac{e^2}{4\pi\epsilon_0\hbar} = 2.1877 \times 10^6 \text{ m s}^{-1}$$

Light velocity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- velocity of light is $c = \alpha^{-1} v_*$
- fine structure constant
 - $\alpha = 1/137.035999074$

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- velocity=[1 0 -1 0]
- atomic unit of velocity is

$$v_* = \frac{e^2}{4\pi\epsilon_0\hbar} = 2.1877 \times 10^6 \text{ m s}^{-1}$$

- velocity of light is c = α⁻¹v_{*}
- fine structure constant
 - $\alpha = 1/137.035999074$
- can be measured directly (quantum Hall effect)

Light velocity

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric an magnetic fields
- More examples

- velocity=[1 0 -1 0]
- atomic unit of velocity is

$$v_* = \frac{e^2}{4\pi\epsilon_0\hbar} = 2.1877 \times 10^6 \text{ m s}^{-1}$$

- velocity of light is c = α⁻¹v_{*}
- fine structure constant
 - $\alpha = 1/137.035999074$
- can be measured directly (quantum Hall effect)

Light velocity

relativistic corrections

Pockels coefficients

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

Pockels coefficients

• external electric field ${m {\cal E}}$

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

Pockels coefficients

- external electric field ${m {\cal E}}$
- permittivity change

$$(\epsilon(\omega; \boldsymbol{\mathcal{E}})^{-1})_{ij} = (\epsilon(\omega; 0)^{-1})_{ij} + r_{ijk}(\omega) \boldsymbol{\mathcal{E}}_k$$

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields

More examples

- external electric field ${\boldsymbol{\mathcal E}}$
- permittivity change

$$(\epsilon(\omega; \boldsymbol{\mathcal{E}})^{-1})_{ij} = (\epsilon(\omega; 0)^{-1})_{ij} + r_{ijk}(\omega)\mathcal{E}_k$$

 Pockels coefficients vanish if crystal has an inversion center

Pockels coefficients

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy

Electric and magnetic fields

More examples

- external electric field $\boldsymbol{\mathcal{E}}$
- permittivity change

$$(\epsilon(\omega; \boldsymbol{\mathcal{E}})^{-1})_{ij} = (\epsilon(\omega; 0)^{-1})_{ij} + r_{ijk}(\omega)\mathcal{E}_k$$

- Pockels coefficients vanish if crystal has an inversion center
- lithium niobate has <u>no</u> inversion center

Pockels coefficients

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy

Electric and magnetic fields

More examples

- external electric field ${\boldsymbol{\mathcal E}}$
- permittivity change

$$(\epsilon(\omega; \boldsymbol{\mathcal{E}})^{-1})_{ij} = (\epsilon(\omega; 0)^{-1})_{ij} + r_{ijk}(\omega)\mathcal{E}_k$$

- Pockels coefficients vanish if crystal has an inversion center
- lithium niobate has no inversion center
- largest coefficient $r_{333} = 30 \text{ pm V}^{-1}$

Pockels coefficients

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy

Electric and magnetic fields

More examples

- external electric field ${\boldsymbol{\mathcal E}}$
- permittivity change

$$(\epsilon(\omega; \boldsymbol{\mathcal{E}})^{-1})_{ij} = (\epsilon(\omega; 0)^{-1})_{ij} + r_{ijk}(\omega)\mathcal{E}_k$$

- Pockels coefficients vanish if crystal has an inversion center
- lithium niobate has no inversion center
- largest coefficient $r_{333} = 30 \text{ pm V}^{-1}$
- small or large?

Pockels coefficients

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy

Electric and magnetic fields

More examples

- external electric field ${\boldsymbol{\mathcal E}}$
- permittivity change

$$(\epsilon(\omega; \boldsymbol{\mathcal{E}})^{-1})_{ij} = (\epsilon(\omega; 0)^{-1})_{ij} + r_{ijk}(\omega)\mathcal{E}_k$$

- Pockels coefficients vanish if crystal has an inversion center
- lithium niobate has no inversion center
- largest coefficient $r_{333} = 30 \text{ pm V}^{-1}$
- small or large?
- $r_{333} \, \mathcal{E}_* \approx 16$

Pockels coefficients

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- external electric field ${\cal E}$
- permittivity change

$$(\epsilon(\omega; \boldsymbol{\mathcal{E}})^{-1})_{ij} = (\epsilon(\omega; 0)^{-1})_{ij} + r_{ijk}(\omega)\mathcal{E}_k$$

- Pockels coefficients vanish if crystal has an inversion center
- lithium niobate has no inversion center
- largest coefficient $r_{333} = 30 \text{ pm V}^{-1}$
- small or large?
- $r_{333} \, \mathcal{E}_* \approx 16$
- · lithium niobate is rather resilient to electrical fields

Pockels coefficients

Elasticity module

・ロ・・母・・ヨ・・ヨ・ ・ しゃ

Elasticity module

Natural units

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples • An elastic medium is described by stress and strain

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- An elastic medium is described by stress and strain
- strain tensor S_{ij} describes deformation

Elasticity module

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- An elastic medium is described by stress and strain
- strain tensor S_{ij} describes deformation
- stress tensor T_{ij} describes force on area element

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

- An elastic medium is described by stress and strain
- strain tensor S_{ij} describes deformation
- stress tensor T_{ij} describes force on area element
- $\mathrm{d}F_j = \mathrm{d}A_iT_{ij}$

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

- An elastic medium is described by stress and strain
- strain tensor S_{ij} describes deformation
- stress tensor T_{ij} describes force on area element
- $\mathrm{d}F_j = \mathrm{d}A_iT_{ij}$
- Hooke's law

$$T_{ij} = \frac{E}{1+\nu} \left\{ S_{ij} + \frac{\nu}{1-2\nu} \delta_{ij} S_{kk} \right\}$$

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples • An elastic medium is described by stress and strain

Elasticity module

- strain tensor S_{ij} describes deformation
- stress tensor T_{ij} describes force on area element
- $\mathrm{d}F_j = \mathrm{d}A_iT_{ij}$
- Hooke's law

$$T_{ij} = \frac{E}{1+\nu} \left\{ S_{ij} + \frac{\nu}{1-2\nu} \delta_{ij} S_{kk} \right\}$$

• Poisson's ratio between 0 and 1/2

Peter Hertel

Overview

Normal matter

Atomic units

Length and energy

Electric and magnetic fields

More examples

- An elastic medium is described by stress and strain
- strain tensor S_{ij} describes deformation
- stress tensor T_{ij} describes force on area element
- $\mathrm{d}F_j = \mathrm{d}A_iT_{ij}$
- Hooke's law

$$T_{ij} = \frac{E}{1+\nu} \left\{ S_{ij} + \frac{\nu}{1-2\nu} \delta_{ij} S_{kk} \right\}$$

- Poisson's ratio between 0 and 1/2
- elasticity module E

Elasticity module

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- An elastic medium is described by stress and strain
- strain tensor S_{ij} describes deformation
- stress tensor T_{ij} describes force on area element
- $\mathrm{d}F_j = \mathrm{d}A_iT_{ij}$
- Hooke's law

$$T_{ij} = \frac{E}{1+\nu} \left\{ S_{ij} + \frac{\nu}{1-2\nu} \delta_{ij} S_{kk} \right\}$$

- Poisson's ratio between 0 and 1/2
- elasticity module E
- expect $E = \text{eV} \text{ Å}^{-3} = 160 \text{ GPa}$

Elasticity module

Peter Hertel

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- An elastic medium is described by stress and strain
- strain tensor S_{ij} describes deformation
- stress tensor T_{ij} describes force on area element
- $\mathrm{d}F_j = \mathrm{d}A_iT_{ij}$
- Hooke's law

$$T_{ij} = \frac{E}{1+\nu} \left\{ S_{ij} + \frac{\nu}{1-2\nu} \delta_{ij} S_{kk} \right\}$$

- Poisson's ratio between 0 and 1/2
- elasticity module E
- expect $E = \text{eV} \text{ Å}^{-3} = 160 \text{ GPa}$
- ... as order of magnitude

Elasticity module

Overview

- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- An elastic medium is described by stress and strain
- strain tensor S_{ij} describes deformation
- stress tensor T_{ij} describes force on area element
- $\mathrm{d}F_j = \mathrm{d}A_iT_{ij}$
- Hooke's law

$$T_{ij} = \frac{E}{1+\nu} \left\{ S_{ij} + \frac{\nu}{1-2\nu} \delta_{ij} S_{kk} \right\}$$

- Poisson's ratio between 0 and 1/2
- elasticity module E
- expect $E = \text{eV} \text{ Å}^{-3} = 160 \text{ GPa}$
- ... as order of magnitude
- steel : E = 200 GPa

Elasticity module

Susceptibility

Feter Herter

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

• Recall the Drude model result $\chi(\omega) = \chi(0) \frac{\Omega^2}{\Omega^2 - \omega^2 - i\Gamma\omega}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- Recall the Drude model result $\chi(\omega) = \chi(0) \frac{\Omega^2}{\Omega^2 \omega^2 i\Gamma\omega}$
- where

$$\chi(0) = \frac{Nq^2}{\epsilon_0 m \Omega^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- Recall the Drude model result $\chi(\omega) = \chi(0) \frac{\Omega^2}{\Omega^2 \omega^2 i\Gamma\omega}$
- where

$$\chi(0) = \frac{Nq^2}{\epsilon_0 m \Omega^2}$$

recall

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Overview
- Normal matter
- Atomic units
- Length and energy
- Electric and magnetic fields
- More examples

- Recall the Drude model result $\chi(\omega) = \chi(0) \frac{\Omega^2}{\Omega^2 \omega^2 i\Gamma\omega}$
- where

$$\chi(0) = \frac{Nq^2}{\epsilon_0 m \Omega^2}$$

recall

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$$

• $N \approx 1$ and $\Omega \approx 1$ in natural units!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで