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States and amplitudes

• The system has many distinct states

• There are amplitudes for hopping from one state to
another

• Find eigenstates of energy H, they are stationary

• Recall ψt = e
−iΩt

ψ0 where H = ~Ω

• derivative with respect to time is called Schrödinger
equation

• Example 1: ammonia molecule

• Example 2: free quasi-electrons
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z

E

Total energy of the ammonia molecule as a function of the position of the

nitrogen ion on the symmetry axis. There are two positions with minimal energy.
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The ammonia molecule

• The nitrogen ion N3+ may be up or down with respect to
the H− plane

• These states are u↑ and u↓

• hopping up or down described by operators U and D,
respectively

• Uu↑ = 0,Uu↓ = u↑,Du↑ = u↓,Du↓ = 0

• position of nitrogen ion is Z = a(U − D) where a is the
off-plane distance

• energy is H = EI − V (U + D) where V is the transition
amplitude

• V may be chosen positive
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Microwave standard

• The energy is represented by matrix

H =

(
E −V
−V E

)

• its eigenvalues are E1 = E − V and E2 = E + V

• resonance frequency f defined by 2π~f = E2 − E1

• microwave standard, f = 23.87012 GHz

• Eigenstates are φ1 = (u↑+u↓)/
√

2 and φ2 = (u↑−u↓)/
√

2
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Stark effect

• The dipole moment is proportional zu Z , i. e.
P = d(U − D)

• External electric field E along the z axis

• H = EI + V (U + D)− dE(U − D)

• The energy is now represented by the matrix

H =

(
E − dE −V
−V E + dE

)
• The energy eigenvalues are

E1,2 = E ±
√

V 2 + (dE)2

• linear and quadratic Stark effect

• Ammonia maser. . .
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Energie

E + V

E − V

Ed/V

The two energy states of the ammonia model as functions of an external electric

field.
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One-dimensional model crystal

• sites labeled by r = . . . ,−1, 0, 1, . . . , equal distances a

• state ur : electron is localized at site r

• Hur = E − V (ur−1 + ur+1)/2

• electron may hop to next neighbor

• V > 0 WLOG, E and V do not depend on r (translation
symmetry)

• left and right shift L and R

• Lur = ur−1 and Rur = ur+1, respectively

• location operator X where Xur = arur

• [R, L] = 0, [X ,R] = aR, [X , L] = −aL
• H = EI − V (L + R)/2
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Stationary states

• eigenstates Hφk = Ekφk

•

φk =
∑
r

e
iakr

ur

Ek = E − V cos ka

• since Rφk = e
−ika

φk and Lφk = e
+ika

φk

• note k ∈ [−π/a, π/a]

• wave number k varies in Brillouin zone

• energy band

• dispersion relation ω = ω(k) where Ek = ~ω(k)
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k

E(k)

−π/a 0 π/a

E − V

E

E + V

Dispersion relation for next neighbor hopping
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Léon Brillouin, 1889-1969, French/US-american physicist
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Wave packets

• eigenstates cannot be normalized

• hence: wave packets

•

ψt =

∫
k
C (k) e

−iω(k)t
φk =

∑
r

cr (t) ur

∫
k

= a

∫ π/a

−π/a

dk

2π
•

cr (t) =

∫
k
C (k) e

ikar
e
−iω(k)t

• wave packet solves Schrödinger equation i~ψ̇t = Hψt
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Erwin Schrödinger, 1887-1961, Austrian physicist
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Velocity

• If M is an observable,

Ṁ =
i

~
[H,M]

describes its temporal rate of change.

• For our model

Ẋ =
Va

~
L− R

2i
• Ẋφk = v(k)φk

• v(k) = (Va/~) sin ka = ω ′(k) is group velocity

• Velocity expectation value at time t is

〈Ẋ 〉t =

∫
k
|C (k)|2 ω ′(k) with

∫
k
|C (k)|2 = 1
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〈Ẋ 〉t =

∫
k
|C (k)|2 ω ′(k) with

∫
k
|C (k)|2 = 1



The Hopping
Model

Peter Hertel

Basics

Two states

Model crystal

More

Scattering

Binding

Velocity

• If M is an observable,
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Ẋ =
Va

~
L− R

2i
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Acceleration

• Ẍ = (i/~)[H, Ẋ ] = 0

• electron moves freely, velocity does not depend on time

• however, in an external electric field E along x :

• H = EI − V (R + L) + eEX
• Ẋ unchanged, but now

Ẍ = −Va2

2~2
eE(R + L)

Ẍ φk = −Va2

~2
eE cos ka φk = −eE E

′′(k)

~2
φk
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• electron moves freely, velocity does not depend on time

• however, in an external electric field E along x :

• H = EI − V (R + L) + eEX
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Effective mass

• m∗ 〈Ẍ 〉 = −eE where

1

m∗
=

1

~

∫
k
|C (k)|2 ω ′′(k)

defines effective mass m∗ .

• effective mass depends on the state, here C (k)

• effective mass depends on the interaction, here V

• effective mass can be negative!

• in three dimensions it is a tensor:(
1

m∗

)
ij

=

∫
k
|C (|k)|2 ∂

2ω(k)

∂ki∂kj



The Hopping
Model

Peter Hertel

Basics

Two states

Model crystal

More

Scattering

Binding

Effective mass
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More on the hopping model

• hopping to the next neigbor, to the second next neighbor,
etc.

• H = EI − V1(R + L)/2− V2(R2 + L2)/2 + . . .

• E (k) = E − V1 cos ka− V2 cos 2ka− . . .
• amounts to a Fourier series for the dispersion curve

• expressions for velocity and effective mass unchanged

• more than one energy band

• filling in electrons, Fermi energy

• valence band, conduction band, band gap, overlapping
bands

• dielectrica, conducters, semi-conducters . . .

• defects
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Defects

• One of many possibilities:

• the energy level at r = 0 is E + ∆ instead of E

• Hu0 = (E + ∆)u0 − V (u−1 + u1)/2

• Hur = Eur − V (ur−1 + ur+1)/2 elsewhere

• Try a superposition of a plane wave and a spherical wave

φ =
∑
r

e
ikar

ur + f
∑
r

e
ika|r |

ur

• solve Hφ = E (k)φ

• for r 6= 0: ok with E (k) = E − V cos ka as before
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Defects ctd.

• solve (Hφ)0 = E (k)φ0

∆ (1 + f )− V cos ka− f V e
ika

= −V cos ka (1 + f )

• the scattering amplitude f is

f = − ∆

∆− iV sin ka

φ =
∑
r

φr ur with φr = e
ikar

+ f e
ika|r |

• note f = 0 if ∆ = 0
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Scattering

• Recall

φ =
∑
r

e
ikar

ur + f
∑
r

e
ika|r |

ur

• reflexion coefficient R = |f |2
• transmission coefficient T = |1 + f |2
• R + T = 1

• note that sign of ∆ is irrelevant since

R =
∆2

∆2 + V 2 sin2 ka
• slow electrons are more likely reflected than fast ones
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• plane wave vanishes if scattering amplitude f (k) is singular

• k = iκ where sinhκa = −2∆/V

• κ > 0 for ∆ < 0

• bound state, trapping

φ =
∑
r

e
−κa|r |

• the deeper the defect, the smaller the bound state
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