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Overview

• boundary value problems

• approximate differential quotient by difference quotient

• one-dimensionals example

• sparse matrices

• Laplacian in two dimensions

• domain of definition

• setting up the matrix

• solve einvalue problem

• various ways to visualize 2D fields



Finite
Differences

Peter Hertel

Overview

Boundary
value problems

Finite
difference
method

Simple
example

2D problems

Not so simple
example

The Matlab
logo

Initial value problems

• think of a second order ODE

y ′′ = f(x, y, y ′)

• itegrate it from x0 to x1 (x-span)

• you must specify two initial conditions

y(x0) = y0 and y ′(x0) = y ′0
• in general, there is a unique solution

• calculate it by one of the ODE solvers
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Boundary value problems

• think of a second order ODE

y ′′ = f(x, y, y ′)

• itegrate it from x0 to x1 (x-span)

• you must specify two conditions

• boundary values

y(x0) = y0 and y(x1) = y1

• cannot easily be solved by ODE solvers
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Finite differences

• derivative of f defined by

f ′(x) = lim
h→0

f(x+ h/2)− f(x− h/2)
h

• replace the limes by a small, but finite h

• second derivative

f ′′(x) =
f ′(x+ h/2)− f ′(x− h/2)

h
• that is

f ′′(x) =
f(x+ h)− 2f(0) + f(x− h)

h2

• for xj = jh and fj = f(xj)

(f ′′)j =
fj+1 − 2fj + fj−1

h2
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Setting up the matrix

• the variable x is approximated by a vector xj = jh

• the function f = f(x) is approximated by a vecor fj

• the second derivative is approximated by a matrix Ljk

• setup this matrix

(f ′′)j =
∑
k

Ljkfk =
fj+1 − 2fj + fj−1

h2

• if j runs from 1 to N , the first and the last equation are
exceptions

• because f0 and fN+1 are given boundary values , not

unknowns
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Example f ′′ + f = 0

• b u u -------- u u b

0 1 2 -------- N-1 N N+1

• first equation
f2 − 2f1
h2

+ f1 = −
f0
h2

• in between
fj+1 − 2fj + fj−1

h2
+ fj = 0

• last equation
−2fN + fN−1

h2
+ fN = −fN+1

h2

• the matrix has one main and two side diagonals
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function [x,f]=od_fdm(xlo,flo,xhi,fhi,NX)

% solve f"+f=0 on x=linspace(xlo,xhi,NX)

% with boundary values flo and fhi, resp.

% NX must be 3 or larger

N=NX-2; % number of unknowns

x=linspace(xlo,xhi,NX);

h=x(2)-x(1);

main=(-2/h^2+1)*ones(1,N);

next=(1/h^2)*ones(1,N-1);

DE=diag(next,-1)+diag(main,0)+diag(next,1);

BV=zeros(N,1);

BV(1)=-flo/h^2;

BV(N)=-fhi/h^2;

sol=DE\BV;

f=[flo,sol’,fhi];

end % od_fdm

>> [x,f]=od_fdm(0,1,pi,-1,16);

>> xx=linspace(0,pi,256);

>> plot(x,f,’ro’,xx,cos(xx),’b-’);

>> axis tight

>> print -depsc od_fdm
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The boundary problem y ′′ + y = 0 was solved by the finite
difference method. x ∈ [0, π] and f(0) = 1, f(π) = −1.
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Non-vanishing elements of matrix DE, as produced by
>> spy(DE)
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Sparse matrices

• for larger matrices, the percentage of non-zeroes becomes
smaller and smaller

• for a 100 x 100 base region, there are 10,000 unknowns

• the Laplacian then has 108 matrix elements

• requiring 109 Bytes, i.e. 1 GB

• mostly zeroes

• sparse matrix technology

• list of {i,k,value} entries for non-vanishing values

• iterative techniques for solving systems of linear equations

• only a few eigenvalues and eigenvectors make sense
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Laplacian in two dimensions

• for simplicity, assume same spacing h along x and y

• mesh points (xi, yk) = (ih, kh) with integer indexes i, k

• field u = u(x, y) represented by unknowns uik = u(xi, yk)

• Laplacian

(∆u)(x, y) =
∂u(x, y)

∂x2
+
∂u(x, y)

∂y2

• is represented by

(∆u)i,k =
ui+1,k + ui−1,k + ui,k+1 + ui,k−1 − 4ui,k

h2

• defined on a region Ω

• values at the boundary ∂Ω are given
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• long-standing test problem for computational solutions of
partial differential equations (PDE)

• solve −∆u = Λu on an L-shaped region

• vibration of a thin membrane

• describe the domain Ω

• work out the Laplacian, a sparse matrix

• solve the eigenvalue problem for the smallest eigenvalue

• visualize the solution
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function d=domain(N)

d.x=linspace(-1,1,N);

d.y=linspace(-1,1,N);

[X,Y]=meshgrid(d.x,d.y);

d.omega=(abs(X)<1)&(abs(Y)<1)&((X>0)|(Y>0));

r=0;

d.rr=zeros(N,N);

for i=1:N

for k=1:N

if d.omega(i,k)

r=r+1;

d.ii(r)=i;

d.kk(r)=k;

d.rr(i,k)=r;

end;

end;

end;

d.NU=r;

end % setup domain
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domain

• the output is collected into a record d

• x and y are x and y axis of the mesh

• omega(i,k) is 1 if a mesh point i,k is an unknown
(interior), 0 otherwise

• r is a running index for the unknowns

• ii(r) is the x-index of unknown r

• kk(r) likewise

• rr(i,k) is the running index of i,k or 0

• forward and backward mapping from double to single
indexes

• NU is the number of unknowns
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function d=laplace(d)

function neighbor(di,dk)

if d.omega(i+di,k+dk)

d.L(r,d.rr(i+di,k+dk))=1;

end

end % neighbor

d.L=sparse(d.NU);

for r=1:d.NU

d.L(r,r)=-4;

i=d.ii(r);

k=d.kk(r);

neighbor(1,0);

neighbor(-1,0);

neighbor(0,1);

neighbor(0,-1);

end

h=d.x(2)-d.x(1);

d.L=d.L/h^2;

end % laplace
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Laplacian

• create a sparse NU x NU matrix L

• set diagonal elements to -4

• inspect neighbors to the north, south, east and west

• if neighbor is an interior point, set L matrix element to +1

• for this, use a private function

• it has access to local variables

• finally, divide by h2

• Laplacian added to record d
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function basemode(d)

[evec,eval]=eigs(-d.L,1,’sm’);

s=sign(sum(evec));

field=zeros(size(d.omega));

for r=1:d.NU

field(d.ii(r),d.kk(r))=s*evec(r);

end

mesh(field);

axis off

print -depsc ml_logo_m.eps

contour(field, 32);

axis equal

print -depsc ml_logo_c.eps

imagesc(field);

axis equal

print -depsc ml_logo_i.eps
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Base mode

• eigenvalues of −∆ are positive

• calculate eigenfunction to smallest eigenvalue

• iterative algorithm!

• transform running index to field indexes

• plot it by the mesh method

• also: contour plot

• also: image plot
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Base mode of Laplacian on an L-shaped domain. Plotted by
mesh. 2883 unknowns.
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Same as before, but plotted by contour.
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Same as before, but plotted by imagesc (scaled image).
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Same as before, but higher resolution. 11907 unknowns.
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