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Overview

¢ boundary value problems

e approximate differential quotient by difference quotient
e one-dimensionals example

® sparse matrices

e Laplacian in two dimensions

e domain of definition

e setting up the matrix

e solve einvalue problem

e various ways to visualize 2D fields



e think of a second order ODE
y" = f(z,y,9)

e itegrate it from z( to x; (x-span)

e you must specify two initial conditions
y(wo) = yo and y'(z0) = yg

e in general, there is a unique solution

o calculate it by one of the ODE solvers




e think of a second order ODE
y"=f(zy,9)

e itegrate it from z( to x; (x-span)

e you must specify two conditions

e boundary values
y(wo) =yo and y(z1) =y

e cannot easily be solved by ODE solvers



o derivative of f defined by
F(0) — 1 T2~ Fl = hJ2)

h—0 h

o replace the limes by a small, but finite h

e second derivative

F() = f'(z+h/2) ; f'(z —h/2)
e that is
fr(a) < L@ TR =200 + S = h)

n2
e for x; = jh and f; = f(x;)
(fryy = B2t i
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Setting up the matrix

the variable z is approximated by a vector z; = jh
the function f = f(x) is approximated by a vecor f;
the second derivative is approximated by a matrix Ly,

setup this matrix

" fj+1*2fj+fj—1
(f7)j=) Ljfr=
J zk: J

h2

if 7 runs from 1 to N, the first and the last equation are
exceptions

because fp and fy1 are given boundary values, not

unknowns



b u u - u u b

0 1 2 ——————— N-1 N N+l
o first equation

J2—2h fo

T th=

e in between

fiv1 =2f;+ fia

S+ /=0

o |ast equation

—2fN+ fn1 LS

h? + N h?

e the matrix has one main and two side diagonals




e function [x,f]l=od_fdm(xlo,flo,xhi,fhi,NX)
Differences % solve f"+f=0 on x=linspace(xlo,xhi,NX)
Peter Hertel % with boundary values flo and fhi, resp.

% NX must be 3 or larger

N=NX-2; % number of unknowns

x=linspace(xlo,xhi,NX);

h=x(2)-x(1);

main=(-2/h~2+1) *ones(1,N);
Simple next=(1/h"2)*ones(1,N-1);
example DE=diag(next,-1)+diag(main,0)+diag(next,1);

BV=zeros(N,1);

BV(1)=-flo/h"2;

BV(N)=-fhi/h"2;

sol=DE\BV;

f=[flo,sol’,fhi]l;

end % od_fdm

>> [x,f]l=0d_fdm(0,1,pi,-1,16);

>> xx=linspace(0,pi,256);

>> plot(x,f,’ro’,xx,cos(xx),’b-);
>> axis tight

>> print -depsc od_fdm
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Simple
example

The boundary problem y” + 1y = 0 was solved by the finite
difference method. = € [0, 7] and f(0) =1, f(m) = —1.
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Simple
example
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Non-vanishing elements of matrix DE, as produced by
>> spy(DE)
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e for larger matrices, the percentage of non-zeroes becomes
smaller and smaller
e for a 100 x 100 base region, there are 10,000 unknowns
e the Laplacian then has 10% matrix elements
Coe e requiring 107 Bytes, i.e. 1 GB
e mostly zeroes
e sparse matrix technology
e list of {i k,value} entries for non-vanishing values
e iterative techniques for solving systems of linear equations

e only a few eigenvalues and eigenvectors make sense
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2D problems

Laplacian in two dimensions

for simplicity, assume same spacing h along = and y
mesh points (z;,y;) = (ih, kh) with integer indexes i, k

field u = u(zx,y) represented by unknowns w;; = u(x;, yx)

Laplacian

u(z,y) | Ou(z,y)
(Au)(e,y) = Z5 5 +
is represented by

Ui 1k + Uim1 ko + Ui g1 + Ui g1 — 4 g

(Au)z,k = h2

defined on a region {2

values at the boundary 912 are given
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Not so simple
example

The MATLAB logo

long-standing test problem for computational solutions of
partial differential equations (PDE)

solve —Au = Au on an L-shaped region

vibration of a thin membrane

describe the domain (2

work out the Laplacian, a sparse matrix

solve the eigenvalue problem for the smallest eigenvalue

visualize the solution



Finite
Differences function d=domain(N)
Peter Hertel d.x=linspace(-1,1,N);
d.y=linspace(-1,1,N);
[X,Y]=meshgrid(d.x,d.y);
d.omega=(abs (X)<1)&(abs(Y)<1)&((X>0) | (Y>0));
r=0;
d.rr=zeros(N,N);
for i=1:N
for k=1:N
if d.omega(i,k)
Not so simple r=r+1 5
e d.ii(r)=i;
d.kk(r)=k;
d.rr(i,k)=r;
end;
end;
end;
d.NU=r;
end Y, setup domain
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e the output is collected into a record d
e x and y are z and y axis of the mesh

e omega(i,k) is 1 if a mesh point i,k is an unknown
(interior), O otherwise
_ e 1 is a running index for the unknowns
eNth":s':mple e ii(r) is the x-index of unknown r
o kk(r) likewise
e rr(i,k) is the running index of i,k or 0

e forward and backward mapping from double to single
indexes

e NU is the number of unknowns
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function neighbor(di,dk)
if d.omega(i+di,k+dk)
d.L(r,d.rr(i+di,k+dk))=1;
end
end % neighbor

d.L=sparse(d.NU);
for r=1:4.NU
Not so simple d.L(r,r)=-4;
erample i=d.ii(r);
k=d.kk(r);
neighbor(1,0);
neighbor(-1,0);
neighbor(0,1);
neighbor(0,-1);
end
h=d.x(2)-d.x(1);
d.L=d.L/h"2;
end Y laplace
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e create a sparse NU x NU matrix L
e set diagonal elements to -4
e inspect neighbors to the north, south, east and west

e if neighbor is an interior point, set L. matrix element to +1

Not so simple
example

e for this, use a private function
e it has access to local variables
e finally, divide by h?

e Laplacian added to record d
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Not so simple
example

function basemode(d)

[evec,evall=eigs(-d.L,1,’sm’);

s=sign(sum(evec));

field=zeros(size(d.omega));

for r=1:4.NU
field(d.ii(xr),d.kk(r))=s*evec(r);

end

mesh(field);

axis off

print -depsc ml_logo_m.eps

contour(field, 32);

axis equal

print -depsc ml_logo_c.eps

imagesc(field);

axis equal

print -depsc ml_logo_i.eps



eigenvalues of —A are positive

calculate eigenfunction to smallest eigenvalue
iterative algorithm!

transform running index to field indexes

plot it by the mesh method

also: contour plot

also: image plot
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Boundary
value problems
Finite
difference
method

Simple
example

2D problems

Not so simple
example

The MATLAB
logo
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Base mode of Laplacian on an L-shaped domain. Plotted by
mesh. 2883 unknowns.
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Same as before, but plotted by imagesc (scaled image).
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