Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array Coupled Mode Theory

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

Spring 2012

Peter Hertel

Overview

- Mode equation
- Helmholtz equation
- Hilbert space
- Coupled waveguides
- Coupled modes
- Random waveguide array

Overview

- Mode equation
- Helmholtz equation
- Hilbert space
- Coupled waveguides
- Coupled modes
- Random waveguide array

Mode equation

Coupled Mode Theory

Peter Hertel

Overview

Mode equation

- Helmholtz equation
- Hilbert space
- Coupled waveguides
- Coupled modes
- Random waveguide array

- $\boldsymbol{E}(t, x, y, z) = E(x, y) e^{i\beta z} e^{-i\omega t}$
- $k_0 = \omega/c$ vacuum wave number
- propagation constant β
- general mode equation $\operatorname{\mathbf{curl}}\operatorname{\mathbf{curl}} E = k_0^2 \,\epsilon(x,y) \, E$
- the curl operator is

$$\left(\begin{array}{ccc} 0 & -\mathrm{i}\beta & \partial_y \\ \mathrm{i}\beta & 0 & -\partial_x \\ -\partial_y & \partial_x & 0 \end{array}\right)$$

• apply it twice

$$\begin{pmatrix} \beta^2 - \partial_y^2 & \partial_x \partial_y & \mathrm{i}\beta \partial_x \\ \partial_x \partial_y & \beta^2 - \partial_x^2 & \mathrm{i}\beta \partial_y \\ \mathrm{i}\beta \partial_x & \mathrm{i}\beta \partial_y & -\partial_x^2 - \partial_y^2 \end{pmatrix} \boldsymbol{E} = k_0^2 \, \boldsymbol{\epsilon}(x, y) \, \boldsymbol{E}$$

Peter Hertel

Overview

- Mode equation
- Helmholtz equation
- Hilbert space
- Coupled waveguides
- Coupled modes
- Random waveguide array

- problem: β and β^2
- problem: two polarization states, three fields
- divergence of ϵE vanishes
- $-i\beta E_z = \epsilon^{-1}\partial_x\epsilon E_x + \epsilon^{-1}\partial_y\epsilon E_y$
- $\bullet\,$ now the mode equation contains only two fields
 - $\begin{pmatrix} k_0^2 \epsilon + \partial_x \epsilon^{-1} \partial_x \epsilon + \partial_y^2 & \partial_x \epsilon^{-1} \partial_y \epsilon \partial_x \partial_y \\ \partial_y \epsilon^{-1} \partial_x \epsilon \partial_y \partial_x & k_0^2 \epsilon + \partial_x^2 + \partial_y \epsilon^{-1} \partial_y \epsilon \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix}$ $= \beta^2 \begin{pmatrix} E_x \\ E_y \end{pmatrix}$

Eliminate E_{γ}

- and it is a normal eigenvalue problem!
- analogous form for magnetic fields

Quasi TE modes

Coupled Mode Theory

Peter Hertel

Overview

Mode equation

Helmholtz equation

- Hilbert space
- Coupled waveguides
- Coupled modes
- Random waveguide array

- If waveguides are broad: $\partial_y \epsilon \approx \epsilon \partial_y$
- $E_x \approx 0$
- this results in the quasi TE mode equation $\{\partial_x^2+\partial_y^2+k_0^2\,\epsilon(x,y)\}E_y=\beta^2\,E_y$
- Helmholtz equation
- with $\partial_y \epsilon \approx \epsilon \partial_y$ and $H_x \approx 0$
- quasi TM mode equation $\{\epsilon \partial_x \epsilon^{-1} \partial_x + \partial_y^2 + k_0^2 \epsilon(x, y)\} H_y = \beta^2 H_y$
- only change is $\epsilon = \epsilon(x,y)$ and additional ∂_y^2
- and: quasi modes have z-components

Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguid array

Hermann von Helmholtz, German physicist, 1821 - 1894; Königsberg, Bonn, Heidelberg, Berlin

Peter Hertel

Overview

- Mode equation
- Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array

- Henceforth we speak about quasi-TE mode
- i. e. there is just one field component E = E(x, y), the 'electric field' or the 'field', for short

Hilbert space

- fields can be linearly combined, they form a linear space
- Power is $P = \frac{2\beta}{\omega\mu_0} \int \mathrm{d}x \,\mathrm{d}y \, |E(x,y)|^2$
- scalar product $(G,F) = \int \mathrm{d}x\,\mathrm{d}y\,G^*(x,y)\,F(x,y)$
- With this, the linear space of fields E = E(x, y) with finite power transfer becomes a Hilbert space
- The Helholtz operator $H=\partial_x^2+\partial_y^2+k_0^2\epsilon(x,y)$
- is self-adjoint:
- (G, HF) = (HG, F)

Peter Hertel

Overview

Mode equatior

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array

David Hilbert, German mathematician, 1862-1943; Königsberg, Göttingen

Helmholtz operator

Coupled Mode Theory

Peter Hertel

Overview

- Mode equation
- Helmholtz equation

Hilbert space

- Coupled waveguides
- Coupled modes
- Random waveguide array

- $\bullet\,$ Self adjoint operators A have remarkable properties
- $A\chi = a\chi$ guaranties that the eigenvalue a is real
- Denote by χ_1,χ_2,\ldots the normalized eigenvectors
- they form a Complete OrthoNormal Set (CONS)
- meaning $(\chi_k, \chi_j) = \delta_{jk}$
- and $\chi = \sum_j (\chi_j, \chi) \chi_j$ for all χ
- $HE = \Lambda E$ guarantees that Λ is real
- Usually, there are only a few modes E_n with positive $\Lambda_n=\beta_n^2$
- They cannot span the entire Hilbert space
- We should add wave packets of evanescent and radiation modes

Coupled waveguides

Coupled Mode Theory

Peter Hertel

Overview

- Mode equation
- Helmholtz equation
- Hilbert space

Coupled waveguides

- Coupled modes
- Random waveguide array

- Consider $r = 1, 2, \ldots, N$ individual waveguides
- Such as a coupler or a waveguide array
- The entire system is again a many mode waveguide
- Its modes are supermodes
- If the single waveguides are well separated
- the supermodes are given by E_r with propagation constants β_r
- However, if E_r and E_s overlap, this will no longer be true

Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguid array

A random waveguide array

Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array

Supermodes

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguid array

Mode expansion

Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array

- If waveguide r is the only one, it obeys $(\frac{1}{k_0^2} \varDelta + \epsilon_r) E_r = n_r^2 E_r$
- Supermode is described by

$$(rac{1}{k_0^2} \varDelta + \epsilon) E = n^2 E$$
 where $\epsilon(x,y) = \sum_r \epsilon_r(x,y)$

bold approximation :

$$E(x,y) = \sum_{r} U_r E_r(x,y)$$

• With

-1

$$M_{sr} = (E_s, (\frac{1}{k_0^2}\Delta + \epsilon)E_r) \text{ and } \Lambda_{sr} = (E_s, E_r)$$

• Solve generalized eigenvalue problem $M\,U=\Lambda\,U$

Coupled modes

Coupled modes ctd.

Coupled Mode Theory

Peter Hertel

Overview

- Mode equatior
- Helmholtz equation
- Hilbert space
- Coupled waveguides

Coupled modes

Random waveguide array

- Recall $M_{sr}=(E_s,(\frac{1}{k_0^2}\varDelta+\epsilon)E_r) \text{ and } \Lambda_{sr}=(E_s,E_r)$

- Because of $(E_r, E_r) = |E_r|^2 = 1$, all diagonal elements of Λ are ones.
- However, there are non-diagonal contributions (overlaps)
- For a certain r one may write $\epsilon = \epsilon_r + \bar{\epsilon}_r$
- where $\bar{\epsilon}_r$ is the permittivity profile <u>outside</u> waveguide r
- such that we may write

$$M_{sr} = n_r^2 \Lambda_{sr} + (E_s, \bar{\epsilon}_r E_r)$$

Peter Hertel

Overview

- Mode equation
- Helmholtz equation
- Hilbert space
- Coupled waveguides
- Coupled modes
- Random waveguide array

- RA=rwga_descriptor()
- RA=rwga_single(RA)
- RA=rwga_overlap(RA)
- RA=rwga_dices(RA)
- RA=rwga_super(RA)
- RA=rwga_intensity(RA,MN)
- Anderson localization

Random waveguide array

oled Mode
neory
er Hertel
view
с
holtz
tion
art space
are space
La al
guides
oled
lom
guide

Coup

Pet

Rand wave array

Ground mode of a 30×30 random waveguide array. Probability for small core is 0.1.

Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array

Finite Difference Method for a super mode.