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Structure fermions

charge -1 -2/3 -1/3 0 +1/3 +2/3 +1

generation 1 e− ū d νe , ν̄e d̄ u e+

generation 2 µ− c̄ s νµ, ν̄µ s̄ c µ+

generation 3 τ− t̄ b ντ , ν̄τ b̄ t τ+

• all structure particles have spin 1/2

• proton p=(uud) and neutron n=(udd)

• both have spin 1/2

• excited states ∆++=(uuu)∗, ∆+=(uud)∗ etc.

• they have spin 3/2

• p is stable, n → p+e−+ν̄ is allowed
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generation 1 e− ū d νe , ν̄e d̄ u e+

generation 2 µ− c̄ s νµ, ν̄µ s̄ c µ+

generation 3 τ− t̄ b ντ , ν̄τ b̄ t τ+

• all structure particles have spin 1/2

• proton p=(uud) and neutron n=(udd)

• both have spin 1/2

• excited states ∆++=(uuu)∗, ∆+=(uud)∗ etc.

• they have spin 3/2

• p is stable, n → p+e−+ν̄ is allowed



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Structure fermions

charge -1 -2/3 -1/3 0 +1/3 +2/3 +1
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Exchange bosons

W− ν̄ee
− ν̄µµ

− ν̄ττ
− ūd c̄s t̄b

γ,Z 0 e+e− µ+µ− τ+τ− (ν̄eνe ν̄µνµ ν̄τντ ) d̄d ūu s̄s c̄c b̄b t̄t

W+ e+νe µ
+νµ τ

+ντ d̄u s̄c b̄t

• W+, γ, Z0, W− mediate electro-weak interaction

• the photon couples to charged particles only

• there are also gluons which mediate strong interactions

• e.g. n=(udd) → (uud)+W− → p+ν̄e+e−

• is there also a graviton G ?

• is there also a Higgs boson H ?
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Spin 1/2 fermions

• massive structure fermion (quarks, electrons) have spin
1/2

• or helicity 1/2 and -1/2

• massless structure fermions (neutrinos) have either helicity
1/2 or -1/2

•

• this explains parity violation

• spin and statistics are related
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Spin and statisics

• rotation of a particle with spin s is described by

ψR = e
i
~α · Sψ

• a 360◦ rotation yields

ψ̄ = e
2πis

ψ = φRψ

• φR = +1 for integer spin (bosons), and -1 for half-integer
spin (fermions)

• exchanging two identicle particles must not change |ψ|2

ψ(σ1x1, σ2x2) = φXψ(σ2x2, σ1x1)

• spin-statistics theorem says φR = φX

• for fermions: ψ(σ1x1, σ2x2) = −ψ(σ2x2, σ1x1)

• Pauli exclusion principle
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Wolfgang Pauli, Austrian/Swiss Physicist, Nobel prize 1945
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Arbitrary number of particles

• A∗ creates a particle, A = (A∗)† annihilates a particle

• (A,A) = 0, (A∗,A∗) = 0, (A,A∗) = I

• bosons: (X ,Y ) = [X ,Y ] = XY − YX , the commutator

• fermions: (X ,Y ) = {X ,Y } = XY + YX , the
anti-commutator

• N = A∗A is number operator

• Ω is vacuum

• create n particles

ψn =
1√
n!

(A∗)n Ω

• Nψn = nψn

• bosons: n = 0, 1, 2, . . .

• fermions: n = 0, 1
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Many states

• j labels one-particle states

• creators A∗j and annihilators Aj

• (Aj ,Ak) = (A∗j ,A
∗
k) = 0 and (Aj ,A

∗
k) = δjk

• for fermions:

• A∗j A
∗
kΩ = −A∗kA∗j Ω

• Nj = A∗j Aj has eigenvalues 0 and 1, i.e.

• a state is occupied at most once

• note that [Nj ,Nk ] = 0
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Energy

• H =
∑

j εj A
∗
j Aj +

∑
jklm Vjklm A∗j A

∗
kAlAm

• if interaction term can be neglected

• H =
∑

j εj Nj

• examples are quasi-free electrons (hopping model) or
phonons

• N =
∑

j Nj is the particle number operator

• note that the number of particles in a system is not fixed
(open system)
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Free energy

• The equilibrium (Gibbs) state of an open system is

G = e
(F − H + µN)/kBT

• free energy F defined by trG = 1

• which gives

F = −kBT ln tr e
(µN − H)/kBT

• temperature T defined by trGH = U = H̄

• chemical potential µ defined by trGN = N̄

• generalization to more than one species of particles is
obvious
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Josiah Willard Gibbs, US American physicist, 1839-1903
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Fermi-Dirac statistics

• because particle number operators commute

e
(µN − H)/kBT =

∏
j

e
(µ− εj)Nj/kBT

• work out the trace, i. e. sum over eigenvalues n = 0, 1

tr e
(µN − H)/kBT =

∏
j

(
1 + e

(µ− εj)/kBT
)

• free energy

F = −kBT
∑
j

ln

(
1 + e

(µ− εj)/kBT
)

• in [ε, ε+ dε] there are V z(ε)dε single particle states

• one may write

F = −kBTV

∫
dε z(ε) ln

(
1 + e

(µ− ε)/kBT
)
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Enrico Fermi, Italian/USA physicist, 1901-1954
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Paul Dirac, Britisch physicist, 1902-1984
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Non-relativistic fermions

• sum over states (factor 2 for spin)∑
j

= 2

∫
d3x d3p

(2π~)3

• ε = p2/2m

• gives∑
j

= V

∫
dε z(ε)

= V
1

π2

(
2m

~2

)3/2 ∫
dε
√
ε
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∫
dε z(ε)

= V
1

π2

(
2m

~2

)3/2 ∫
dε
√
ε
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Particle density and pressure

• recall

F = −kBTV

∫
dε z(ε) ln

(
1 + e

(µ− ε)/kBT
)

• particle density is

n(T , µ) = − 1

V

∂F

∂µ

=

∫
dε z(ε)

1

e
(ε− µ)/kBT + 1

• pressure is

p = − ∂F
∂V

= kBT

∫
dε z(ε) ln

(
1 + e

(µ− ε)/kBT
)

=
2

3

∫
dε z(ε)

ε

e
(ε− µ)/kBT + 1
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Zero temperature

• if T → 0
1

e
(ε− µ)/kBT + 1

= θ(µ− ε)

• particle density

n(0, µ) =

∫ µ

−∞
dε z(ε)

• pressure

p(0, µ) =
2

3

∫ µ

−∞
dε z(ε) ε

• if particle density n̄ is given, then

n̄ = n(0, εF) =

∫ εF

−∞
dε z(ε)

defines Fermi energy
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Atoms and so forth

• Periodic system

• from small to huge molecules

• dielectrics, conductors, semiconductors, ferromagnets

• stability of normal matter

• stars can be stable even at T = 0



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Atoms and so forth

• Periodic system

• from small to huge molecules

• dielectrics, conductors, semiconductors, ferromagnets

• stability of normal matter

• stars can be stable even at T = 0



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Atoms and so forth

• Periodic system

• from small to huge molecules

• dielectrics, conductors, semiconductors, ferromagnets

• stability of normal matter

• stars can be stable even at T = 0



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Atoms and so forth

• Periodic system

• from small to huge molecules

• dielectrics, conductors, semiconductors, ferromagnets

• stability of normal matter

• stars can be stable even at T = 0



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Atoms and so forth

• Periodic system

• from small to huge molecules

• dielectrics, conductors, semiconductors, ferromagnets

• stability of normal matter

• stars can be stable even at T = 0



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Hydrodynamic equilibrium

• The mass within a sphere of radius R is

M(r) = 4π

∫ r

0
ds s2ρ(s)

• gravitational force per unit volume

f (r) = −G ρ(r)M(r)

r2

• pressure gradient and force must balance

p ′(r) = f (r)

• relate pressure with mass density
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Equation of state

• electron gas at T = 0

• recall

z(ε) =
1

π2

{
2m

~2

}3/2√
ε

• particle density

n(0, µ) =
2

3π2

{
2m

~2

}3/2

µ3/2

• pressure

p(0, µ) =
4

15π2

{
2m

~2

}3/2

µ5/2

• eliminate chemical potential

p = a
~2

m
n5/3 where a = 1.2058

• since one electron is related with two nucleons

p = a
~2

me

{
ρ

2mp

}5/3
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1

Pressure p (decreasing) and mass M (increasing) of a white dwarf vs. distance r

from the center in natural units. We have assumed zero temperature, two

nucleons per electron which are treated non-relativistically. r = 1 corresponds to

6500 km, M = 1 to 0.85 sun masses.
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Crab nebula, the cloud of debris of the 1054 supernova



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

There is a neutron star (pulsar) at its center.



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Jagadris Chandra Bose, Indian physicist, 1858-1937
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Bosons

• bosons have integer spin or integer helicity

• such as the photon

• such as (qq̄) states - mesons

• or (ee) - Cooper pairs

• or (ppnn), the helium nucleus or helium atom

• or phonons, the quanta of lattice vibrations
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Many bosons

• recall the spin/statistics theorem

• [Aj ,Ak ] = [A∗j ,A
∗
k ] = 0 - commutators!

• [Aj ,A
∗
k ] = δjk I

• Nj = A∗j ,Aj - number of particles in state j

• eigenvalues are n = 0, 1, 2, . . .

• work out the trace, i. e. sum over eigenvalues
n = 0, 1, 2, . . .

• N =
∑

j Nj - total number of indistinguishable particles
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• [Aj ,Ak ] = [A∗j ,A
∗
k ] = 0 - commutators!

• [Aj ,A
∗
k ] = δjk I

• Nj = A∗j ,Aj - number of particles in state j

• eigenvalues are n = 0, 1, 2, . . .

• work out the trace, i. e. sum over eigenvalues
n = 0, 1, 2, . . .

• N =
∑

j Nj - total number of indistinguishable particles
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Free energy

• energy is H =
∑

j εj A
∗
j Aj + . . .

• free energy is

F = −kBT ln tr e
(µN − H)/kBT

• Nj commute, therefore

e
(µN − H)/kBT =

∏
j

e
(µ− εj)Nj/kBT

• work out the trace, i. e. sum over eigenvalues
n = 0, 1, 2, . . .

tr e
(µ− εj)Nj/kBT =

∞∑
n=0

{
e

(µ− εj)/kBT
}n

=
1

1− e
(µ− εj)/kBT
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Free energy ctd.

• the free energy of a boson gas is

F = kBT
∑
j

ln

(
1− e

(µ− εj)/kBT
)

= kBT V

∫
dε z(ε) ln

(
1− e

(µ− ε)/kBT
)

• compare with the free energy of a fermi gas

F = −kBT V

∫
dε z(ε) ln

(
1 + e

(µ− ε)/kBT
)

• recall spin/statistics theorem: again the +/− difference



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Free energy ctd.

• the free energy of a boson gas is

F = kBT
∑
j

ln

(
1− e

(µ− εj)/kBT
)

= kBT V

∫
dε z(ε) ln

(
1− e

(µ− ε)/kBT
)

• compare with the free energy of a fermi gas

F = −kBT V

∫
dε z(ε) ln

(
1 + e

(µ− ε)/kBT
)

• recall spin/statistics theorem: again the +/− difference



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Free energy ctd.

• the free energy of a boson gas is

F = kBT
∑
j

ln

(
1− e

(µ− εj)/kBT
)

= kBT V

∫
dε z(ε) ln

(
1− e

(µ− ε)/kBT
)

• compare with the free energy of a fermi gas

F = −kBT V

∫
dε z(ε) ln

(
1 + e

(µ− ε)/kBT
)

• recall spin/statistics theorem: again the +/− difference



Fermions,
Bosons and

their
Statistics

Peter Hertel

Fundamental
particles

Spin and
statistics

Many particles

Gibbs state

Fermions

Zero
temperature

White dwarfs
and neutron
stars

Bosons

Black body
radiation

Bose-Einstein
condensation

Black body radiation

• photon energy is ~ω = pc

• density of states can be read off from

2

∫
d3x d3p

(2π~)3
= V

∫
dω ω2

π2c3

• µ = 0

• black body free energy is

F = kBT V

∫ ∞
0

dω ω2

π2c3
ln

(
1− e

−~ω/kBT
)

• internal energy U

• U = F + TS = F − T∂F/∂T

• Planck’s formula

U = V

∫ ∞
0

dω ω2

π2c3
~ω

e
~ω/kBT − 1
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Max Planck, German physicist, 1858-1947
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Particle density

• recall
∞∑
n=0

e
n(µ− εj)/kBT =

1

1− e
(µ− εj)/kBT

• valid only if µ < min εj = 0

• −∂F/∂µ = N̄ is average particle number

• the average particle density n̄ is therefore

n̄(T , µ) =

∫ ∞
0

dε z(ε)
1

e
(ε− µ)/kBT − 1

• n̄(T , 0) is maximal density:

n̄max(T ) =

∫ ∞
0

dε z(ε)
1

e
ε/kBT − 1
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Bose-Einstein condensation

• If T decreases, so does n̄max(T )

• if n̄ is given, there is a temperature Tc such that

n̄max(Tc) = n̄

• for even lower temperature, only a fraction of the particles
are in thermal equilibrium

• the rest is in the multiply occupied ground state

• supra-fluidity

• superconductivity

• light
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Albert Einstein, German physicist, 1879-1955
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