Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Fermions, Bosons and their Statistics

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

March/April 2011

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Structure fermions

charge	-1	-2/3	-1/3	0	+1/3	+2/3	+1
generation 1	<i>e</i> ⁻	ū	d	$\nu_e, \bar{\nu}_e$	ā	и	e ⁺
generation 2	μ^{-}	ī	5	$ u_{\mu}, ar{ u}_{\mu}$	5	с	μ^+
generation 3	τ^{-}	ī	Ь	$ u_{ au}, ar{ u}_{ au}$	Б	t	τ^+

• all structure particles have spin 1/2

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Structure fermions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

charge	-1	-2/3	-1/3	0	+1/3	+2/3	+1
generation 1	e-	ū	d	$\nu_e, \bar{\nu}_e$	ā	и	e ⁺
generation 2	μ^{-}	Ē	5	$ u_{\mu}, ar{ u}_{\mu}$	5	с	μ^+
generation 3	τ^{-}	ī	Ь	$ u_{ au}, ar{ u}_{ au}$	Б	t	τ^+

- all structure particles have spin 1/2
- proton p=(uud) and neutron n=(udd)

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Structure fermions

charge	-1	-2/3	-1/3	0	+1/3	+2/3	+1
generation 1	e-	ū	d	$\nu_e, \bar{\nu}_e$	ā	и	e ⁺
generation 2	μ^{-}	ī	5	$ u_{\mu}, ar{ u}_{\mu}$	5	с	μ^+
generation 3	τ^{-}	ī	Ь	$ u_{ au}, ar{ u}_{ au}$	\bar{b}	t	τ^+

- all structure particles have spin 1/2
- proton p=(uud) and neutron n=(udd)
- both have spin 1/2

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Structure fermions

charge	-1	-2/3	-1/3	0	+1/3	+2/3	+1
generation 1	e-	ū	d	$\nu_e, \bar{\nu}_e$	ā	и	e ⁺
generation 2	μ^{-}	ī	5	$ u_{\mu}, ar{ u}_{\mu}$	5	с	μ^+
generation 3	τ^{-}	ī	Ь	$ u_{ au}, ar{ u}_{ au}$	\bar{b}	t	τ^+

- all structure particles have spin 1/2
- proton p=(uud) and neutron n=(udd)
- both have spin 1/2
- excited states $\Delta^{++}=(uuu)^*$, $\Delta^+=(uud)^*$ etc.

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Structure fermions

charge	-1	-2/3	-1/3	0	+1/3	+2/3	+1
generation 1	<i>e</i> ⁻	ū	d	$\nu_e, \bar{\nu}_e$	ā	и	e ⁺
generation 2	μ^{-}	ī	5	$ u_{\mu}, ar{ u}_{\mu}$	5	с	μ^+
generation 3	τ^{-}	ī	Ь	$ u_{ au}, ar{ u}_{ au}$	Б	t	τ^+

- all structure particles have spin 1/2
- proton p=(uud) and neutron n=(udd)
- both have spin 1/2
- excited states $\Delta^{++}=(uuu)^*$, $\Delta^+=(uud)^*$ etc.
- they have spin 3/2

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Structure fermions

charge	-1	-2/3	-1/3	0	+1/3	+2/3	+1
generation 1	e-	ū	d	$\nu_e, \bar{\nu}_e$	ā	и	e ⁺
generation 2	μ^{-}	ī	5	$ u_{\mu}, ar{ u}_{\mu}$	5	с	μ^+
generation 3	τ^{-}	ī	Ь	$ u_{ au}, ar{ u}_{ au}$	\bar{b}	t	τ^+

- all structure particles have spin 1/2
- proton p=(uud) and neutron n=(udd)
- both have spin 1/2
- excited states $\Delta^{++}=(uuu)^*$, $\Delta^+=(uud)^*$ etc.
- they have spin 3/2
- p is stable, n \rightarrow p+e^++ $\bar{\nu}$ is allowed

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Exchange bosons

W^{-}	$\bar{\nu}_e e^- \bar{\nu}_\mu \mu^- \bar{\nu}_ au au^-$	ūd īcs ītb
γ, Z^{0}	$e^+e^- \mu^+\mu^- au^+ au^- (ar u_e u_e \ ar u_\mu u_\mu \ ar u_ au u_ au)$	dd ūu ss cc bb tt
W^+	$e^+ u_e\;\mu^+ u_\mu\; au^+ u_ au$	du sc bt

- W⁺, γ , Z⁰, W⁻ mediate electro-weak interaction

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

$\begin{array}{c|cccc} W^{-} & \bar{\nu}_{e}e^{-} \; \bar{\nu}_{\mu}\mu^{-} \; \bar{\nu}_{\tau}\tau^{-} & \bar{u}d\; \bar{c}s\; \bar{t}b \\ \hline \gamma, Z^{0} & e^{+}e^{-} \; \mu^{+}\mu^{-} \; \tau^{+}\tau^{-} \; (\bar{\nu}_{e}\nu_{e}\; \bar{\nu}_{\mu}\nu_{\mu}\; \bar{\nu}_{\tau}\nu_{\tau}) & \bar{d}d\; \bar{u}u\; \bar{s}s\; \bar{c}c\; \bar{b}b\; \bar{t}t \\ \hline W^{+} & e^{+}\nu_{e}\; \mu^{+}\nu_{\mu}\; \tau^{+}\nu_{\tau} & \bar{d}u\; \bar{s}c\; \bar{b}t \end{array}$

Exchange bosons

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• W⁺, γ , Z⁰, W⁻ mediate electro-weak interaction

the photon couples to charged particles only

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

W-	$\bar{ u}_e e^- \bar{ u}_\mu \mu^- \bar{ u}_ au au^-$	ūd īcs ītb
γ, Z^0	$e^+e^- \mu^+\mu^- au^+ au^- (ar u_e u_e \ ar u_\mu u_\mu \ ar u_ au u_ au)$	dd ūu ss cc bb tt
W+	$e^+ u_e \ \mu^+ u_\mu \ au^+ u_ au$	du sc bt

• W⁺, γ , Z⁰, W⁻ mediate electro-weak interaction

- the photon couples to charged particles only
- · there are also gluons which mediate strong interactions

Fermions, Bosons and their Statistics

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

W^{-}	$\bar{\nu}_e e^- \bar{\nu}_\mu \mu^- \bar{\nu}_ au au^-$	ūd īcs ītb
γ, Z^{0}	$e^+e^- \ \mu^+\mu^- \ au^+ au^- \ (ar{ u}_e u_e \ ar{ u}_\mu u_\mu \ ar{ u}_ au u_ au)$	dd ūu ss cc bb tt
W^+	$e^+ u_e \ \mu^+ u_\mu \ au^+ u_ au$	du sc bt

• W⁺, γ , Z⁰, W⁻ mediate electro-weak interaction

the photon couples to charged particles only

- there are also gluons which mediate strong interactions
- e.g. n=(udd) \rightarrow (uud)+W⁻ \rightarrow p+ $\bar{\nu}_e$ +e⁻

Fermions, Bosons and their Statistics

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

W^{-}	$\bar{\nu}_e e^- \bar{\nu}_\mu \mu^- \bar{\nu}_\tau \tau^-$	ūd īcs ītb
γ, Z^0	$e^+e^- \ \mu^+\mu^- \ au^+ au^- \ (ar{ u}_e u_e \ ar{ u}_\mu u_\mu \ ar{ u}_ au u_ au)$	dd ūu ss cc bb tt
W^+	$e^+ u_e \ \mu^+ u_\mu \ au^+ u_ au$	du sc bt

• W⁺, γ , Z⁰, W⁻ mediate electro-weak interaction

the photon couples to charged particles only

- there are also gluons which mediate strong interactions
- e.g. n=(udd) \rightarrow (uud)+W⁻ \rightarrow p+ $\bar{\nu}_e$ +e⁻
- is there also a graviton G ?

Fermions, Bosons and their Statistics

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

	W^{-}	$\bar{\nu}_e e^- \bar{\nu}_\mu \mu^- \bar{\nu}_ au au^-$	ūd īcs ītb
,	γ, Z^0	$e^+e^- \mu^+\mu^- \tau^+ au^- (ar u_e u_e ar u_\mu u_\mu ar u_ au u_ au)$	dd ūu ss cc bb tt
	W^+	$e^+ u_e \ \mu^+ u_\mu \ au^+ u_ au$	du sc bt

• W⁺, γ , Z⁰, W⁻ mediate electro-weak interaction

the photon couples to charged particles only

- there are also gluons which mediate strong interactions
- e.g. n=(udd) \rightarrow (uud)+W⁻ \rightarrow p+ $\bar{\nu}_e$ +e⁻
- is there also a graviton G ?
- is there also a Higgs boson H ?

Fermions, Bosons and their Statistics

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

・ロト ・聞ト ・ヨト ・ヨト

ж

The Aleph detector (opened) at Cern

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Spin 1/2 fermions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• massive structure fermion (quarks, electrons) have spin 1/2

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Spin 1/2 fermions

- massive structure fermion (quarks, electrons) have spin 1/2
- or helicity 1/2 and -1/2

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Spin 1/2 fermions

- massive structure fermion (quarks, electrons) have spin $1/2\,$
- or helicity 1/2 and -1/2
- massless structure fermions (neutrinos) have either helicity 1/2 \underline{or} -1/2

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

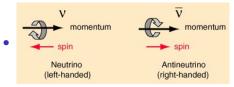
Black body radiation

Bose-Einstein condensation

Spin 1/2 fermions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- massive structure fermion (quarks, electrons) have spin 1/2
- or helicity 1/2 and -1/2
- massless structure fermions (neutrinos) have either helicity $1/2 \ \underline{\text{or}} \ \text{-} 1/2$



Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

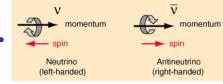
Bose-Einstein condensation

Spin 1/2 fermions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

- massive structure fermion (quarks, electrons) have spin $1/2\,$
- or helicity 1/2 and -1/2
- massless structure fermions (neutrinos) have either helicity $1/2 \ \underline{\text{or}} \ \text{-} 1/2$



this explains parity violation

Peter Hertel

Fundamental particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

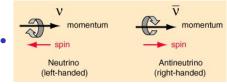
Bosons

Black body radiation

Bose-Einstein condensation

Spin 1/2 fermions

- massive structure fermion (quarks, electrons) have spin 1/2
- or helicity 1/2 and -1/2
- massless structure fermions (neutrinos) have either helicity $1/2 \ \underline{\text{or}} \ \text{-} 1/2$



- this explains parity violation
- spin and statistics are related

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Spin and statisics

• rotation of a particle with spin s is described by $\psi_{\rm R} = e^{\frac{i}{\hbar} \alpha \cdot \mathbf{S}} \psi$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Spin and statisics

- rotation of a particle with spin s is described by $\psi_{\rm R} = e^{\frac{i}{\hbar} \alpha \cdot \mathbf{S}} \psi$
- a 360° rotation yields $\bar{\psi} = e^{2\pi i s} \psi = \phi_R \psi$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Spin and statisics

- rotation of a particle with spin s is described by $\psi_{\rm R} = e^{\frac{i}{\hbar} \alpha \cdot \mathbf{S}} \psi$
- a 360° rotation yields $\bar{\psi} = e^{2\pi i s} \psi = \phi_{\rm R} \psi$
- $\phi_{\rm R} = +1$ for integer spin (bosons), and -1 for half-integer spin (fermions)

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Spin and statisics

- rotation of a particle with spin s is described by $\psi_{\rm R} = e^{\frac{i}{\hbar} \alpha \cdot \mathbf{S}} \psi$
- a 360° rotation yields $\bar{\psi} = e^{2\pi i s} \psi = \phi_{\rm B} \psi$
- $\phi_{\rm R} = +1$ for integer spin (bosons), and -1 for half-integer spin (fermions)
- exchanging two identicle particles must not change $|\psi|^2$ $\psi(\sigma_1 \mathbf{x}_1, \sigma_2 \mathbf{x}_2) = \phi_{\mathbf{X}} \psi(\sigma_2 \mathbf{x}_2, \sigma_1 \mathbf{x}_1)$

Peter Hertel

Fundamenta particles

Spin and statistics

- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Spin and statisics

- rotation of a particle with spin s is described by $\psi_{\rm R} = e^{\frac{i}{\hbar} \alpha \cdot \mathbf{S}} \psi$
- a 360° rotation yields $\bar{\psi} = e^{2\pi i s} \psi = \phi_{\rm B} \psi$
- $\phi_{\rm R} = +1$ for integer spin (bosons), and -1 for half-integer spin (fermions)
- exchanging two identicle particles must not change $|\psi|^2$ $\psi(\sigma_1 \mathbf{x}_1, \sigma_2 \mathbf{x}_2) = \phi_X \psi(\sigma_2 \mathbf{x}_2, \sigma_1 \mathbf{x}_1)$
- spin-statistics theorem says $\phi_{\rm R} = \phi_{\rm X}$

Peter Hertel

Fundamenta particles

Spin and statistics

- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars
- Bosons
- Black body radiation
- Bose-Einstein condensation

Spin and statisics

- rotation of a particle with spin s is described by $\psi_{\rm R} = e^{\frac{i}{\hbar} \alpha \cdot \mathbf{S}} \psi$
- a 360° rotation yields $\bar{\psi} = e^{2\pi i s} \psi = \phi_{\rm R} \psi$
- $\phi_{\rm R} = +1$ for integer spin (bosons), and -1 for half-integer spin (fermions)
- exchanging two identicle particles must not change $|\psi|^2 \psi(\sigma_1 \mathbf{x}_1, \sigma_2 \mathbf{x}_2) = \phi_X \psi(\sigma_2 \mathbf{x}_2, \sigma_1 \mathbf{x}_1)$
- spin-statistics theorem says $\phi_{
 m R} = \phi_{
 m X}$
- for fermions: $\psi(\sigma_1 \mathbf{x}_1, \sigma_2 \mathbf{x}_2) = -\psi(\sigma_2 \mathbf{x}_2, \sigma_1 \mathbf{x}_1)$

Peter Hertel

Fundamenta particles

Spin and statistics

- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars
- Bosons
- Black body radiation
- Bose-Einstein condensation

Spin and statisics

- rotation of a particle with spin s is described by $\psi_{\rm R} = e^{\frac{i}{\hbar} \alpha \cdot \mathbf{S}} \psi$
- a 360° rotation yields $\bar{\psi} = e^{2\pi i s} \psi = \phi_{\rm R} \psi$
- $\phi_{\rm R} = +1$ for integer spin (bosons), and -1 for half-integer spin (fermions)
- exchanging two identicle particles must not change $|\psi|^2 \psi(\sigma_1 \mathbf{x}_1, \sigma_2 \mathbf{x}_2) = \phi_X \psi(\sigma_2 \mathbf{x}_2, \sigma_1 \mathbf{x}_1)$
- spin-statistics theorem says $\phi_{
 m R}=\phi_{
 m X}$
- for fermions: $\psi(\sigma_1 \mathbf{x}_1, \sigma_2 \mathbf{x}_2) = -\psi(\sigma_2 \mathbf{x}_2, \sigma_1 \mathbf{x}_1)$
- Pauli exclusion principle

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Wolfgang Pauli, Austrian/Swiss Physicist, Nobel prize 1945

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

•
$$(A, A) = 0, (A^*, A^*) = 0, (A, A^*) = I$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• A^* creates a particle, $A = (A^*)^\dagger$ annihilates a particle

•
$$(A, A) = 0$$
, $(A^*, A^*) = 0$, $(A, A^*) = I$

• bosons: (X, Y) = [X, Y] = XY - YX, the commutator

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

•
$$(A, A) = 0$$
, $(A^*, A^*) = 0$, $(A, A^*) = I$

- bosons: (X, Y) = [X, Y] = XY YX, the commutator
- fermions: $(X, Y) = \{X, Y\} = XY + YX$, the anti-commutator

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

•
$$(A, A) = 0$$
, $(A^*, A^*) = 0$, $(A, A^*) = I$

- bosons: (X, Y) = [X, Y] = XY YX, the commutator
- fermions: $(X, Y) = \{X, Y\} = XY + YX$, the anti-commutator
- *N* = *A***A* is number operator

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$(A, A) = 0, (A^*, A^*) = 0, (A, A^*) = I$$

- bosons: (X, Y) = [X, Y] = XY YX, the commutator
- fermions: $(X, Y) = \{X, Y\} = XY + YX$, the anti-commutator
- *N* = *A***A* is number operator
- Ω is vacuum

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$(A, A) = 0$$
, $(A^*, A^*) = 0$, $(A, A^*) = I$

- bosons: (X, Y) = [X, Y] = XY YX, the commutator
- fermions: $(X, Y) = \{X, Y\} = XY + YX$, the anti-commutator
- *N* = *A***A* is number operator
- Ω is vacuum
- create n particles

$$\psi_n = \frac{1}{\sqrt{n!}} \left(A^* \right)^n \Omega$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

•
$$(A, A) = 0$$
, $(A^*, A^*) = 0$, $(A, A^*) = I$

- bosons: (X, Y) = [X, Y] = XY YX, the commutator
- fermions: $(X, Y) = \{X, Y\} = XY + YX$, the anti-commutator
- *N* = *A***A* is number operator
- Ω is vacuum
- create n particles

$$\psi_n = \frac{1}{\sqrt{n!}} (A^*)^n \,\Omega$$

•
$$N\psi_n = n\psi_r$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

• A^* creates a particle, $A=(A^*)^\dagger$ annihilates a particle

•
$$(A, A) = 0$$
, $(A^*, A^*) = 0$, $(A, A^*) = I$

- bosons: (X, Y) = [X, Y] = XY YX, the commutator
- fermions: $(X, Y) = \{X, Y\} = XY + YX$, the anti-commutator
- *N* = *A***A* is number operator
- Ω is vacuum
- create n particles

$$\psi_n = \frac{1}{\sqrt{n!}} \, (A^*)^n \, \Omega$$

•
$$N\psi_n = n\psi_n$$

• bosons: n = 0, 1, 2, ...

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Arbitrary number of particles

• A^* creates a particle, $A=(A^*)^\dagger$ annihilates a particle

•
$$(A, A) = 0$$
, $(A^*, A^*) = 0$, $(A, A^*) = I$

- bosons: (X, Y) = [X, Y] = XY YX, the commutator
- fermions: $(X, Y) = \{X, Y\} = XY + YX$, the anti-commutator
- *N* = *A***A* is number operator
- Ω is vacuum
- create n particles

$$\psi_n = \frac{1}{\sqrt{n!}} \, (A^*)^n \, \Omega$$

•
$$N\psi_n = n\psi_n$$

- bosons: n = 0, 1, 2, ...
- fermions: n = 0, 1

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Many states

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• *j* labels one-particle states

(日)

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• *j* labels one-particle states

• creators A_i^* and annihilators A_j

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

- *j* labels one-particle states
- creators A_i^* and annihilators A_i
- $(A_j, A_k) = (A_j^*, A_k^*) = 0$ and $(A_j, A_k^*) = \delta_{jk}$

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

- *j* labels one-particle states
- creators A_i^* and annihilators A_j
- $(A_j, A_k) = (A_j^*, A_k^*) = 0$ and $(A_j, A_k^*) = \delta_{jk}$
- for fermions:

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

- *j* labels one-particle states
- creators A_i^* and annihilators A_j
- $(A_j, A_k) = (A_j^*, A_k^*) = 0$ and $(A_j, A_k^*) = \delta_{jk}$
- for fermions:
- $A_j^* A_k^* \Omega = -A_k^* A_j^* \Omega$

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

- *j* labels one-particle states
- creators A_i^* and annihilators A_j
- $(A_j, A_k) = (A_j^*, A_k^*) = 0$ and $(A_j, A_k^*) = \delta_{jk}$
- for fermions:
- $A_j^* A_k^* \Omega = -A_k^* A_j^* \Omega$
- $N_j = A_j^* A_j$ has eigenvalues 0 and 1, i.e.

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

- *j* labels one-particle states
- creators A_i^* and annihilators A_j
- $(A_j, A_k) = (A_j^*, A_k^*) = 0$ and $(A_j, A_k^*) = \delta_{jk}$
- for fermions:
- $A_j^* A_k^* \Omega = -A_k^* A_j^* \Omega$
- $N_j = A_j^* A_j$ has eigenvalues 0 and 1, i.e.
- a state is occupied at most once

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

- *j* labels one-particle states
- creators A_i^* and annihilators A_j
- $(A_j, A_k) = (A_j^*, A_k^*) = 0$ and $(A_j, A_k^*) = \delta_{jk}$
- for fermions:
- $A_j^* A_k^* \Omega = -A_k^* A_j^* \Omega$
- $N_j = A_j^* A_j$ has eigenvalues 0 and 1, i.e.
- a state is occupied at most once
- note that [N_j, N_k] = 0

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Energy

• $H = \sum_{i} \epsilon_{j} A_{i}^{*} A_{j} + \sum_{jklm} V_{jklm} A_{j}^{*} A_{k}^{*} A_{l} A_{m}$

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

• $H = \sum_{i} \epsilon_{j} A_{i}^{*} A_{j} + \sum_{jklm} V_{jklm} A_{i}^{*} A_{k}^{*} A_{l} A_{m}$

• if interaction term can be neglected

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• $H = \sum_{j} \epsilon_{j} A_{j}^{*} A_{j} + \sum_{jklm} V_{jklm} A_{j}^{*} A_{k}^{*} A_{l} A_{m}$

• if interaction term can be neglected

•
$$H = \sum_j \epsilon_j N_j$$

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• $H = \sum_j \epsilon_j A_j^* A_j + \sum_{jklm} V_{jklm} A_j^* A_k^* A_l A_m$

- if interaction term can be neglected
- $H = \sum_j \epsilon_j N_j$
- examples are quasi-free electrons (hopping model) or phonons

their Statistics Peter Hertel

Fermions, Bosons and

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• $H = \sum_j \epsilon_j A_j^* A_j + \sum_{jklm} V_{jklm} A_j^* A_k^* A_l A_m$

• if interaction term can be neglected

•
$$H = \sum_j \epsilon_j N_j$$

- examples are quasi-free electrons (hopping model) or phonons
- $N = \sum_{j} N_{j}$ is the particle number operator

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

•
$$H = \sum_j \epsilon_j A_j^* A_j + \sum_{jklm} V_{jklm} A_j^* A_k^* A_l A_m$$

• if interaction term can be neglected

•
$$H = \sum_{j} \epsilon_{j} N_{j}$$

- examples are quasi-free electrons (hopping model) or phonons
- $N = \sum_{j} N_{j}$ is the particle number operator
- note that the number of particles in a system is not fixed (open system)

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Free energy

• The equilibrium (Gibbs) state of an open system is $G = e^{(F - H + \mu N)/k_{\rm B}T}$

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

- The equilibrium (Gibbs) state of an open system is $G = e^{(F H + \mu N)/k_{\rm B}T}$
- free energy F defined by tr G = 1

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• The equilibrium (Gibbs) state of an open system is $G = e^{(F - H + \mu N)/k_{B}T}$

- free energy F defined by tr G = 1
- which gives

$$F = -k_{
m B}T \ln$$
 tr $e^{\left(\mu N - H
ight)/k_{
m B}T}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• The equilibrium (Gibbs) state of an open system is $G = e^{(F - H + \mu N)/k_{\rm B}T}$

- free energy F defined by tr G = 1
- which gives

$${\it F}=-{\it k}_{
m B}{\it T}$$
 In tr $e^{\left(\mu N-H
ight)/{\it k}_{
m B}{\it T}}$

• temperature T defined by tr $GH = U = \overline{H}$

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• The equilibrium (Gibbs) state of an open system is $G = e^{(F - H + \mu N)/k_{\rm B}T}$

- free energy F defined by tr G = 1
- which gives

$${\it F}=-{\sf k}_{\sf B}{\it T}$$
 In tr $e^{\left(\mu {\it N}-{\it H}
ight)/{\sf k}_{\sf B}{\it T}}$

- temperature T defined by tr $GH = U = \overline{H}$
- chemical potential μ defined by tr $GN = \bar{N}$

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• The equilibrium (Gibbs) state of an open system is $G = e^{(F - H + \mu N)/k_{\rm B}T}$

- free energy F defined by tr G = 1
- which gives

$${m F}=-{f k}_{
m B}{m T}$$
 In tr $e^{ig(\mu {m N}-{m H}ig)/{f k}_{
m B}{m T}}$

- temperature T defined by tr $GH = U = \overline{H}$
- chemical potential μ defined by tr ${\it GN}=ar{\it N}$
- generalization to more than one species of particles is obvious

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

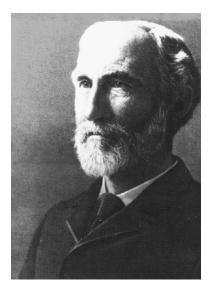
Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

Josiah Willard Gibbs, US American physicist, 1839-1903

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Fermi-Dirac statistics

• because particle number operators commute $e^{(\mu N - H)/k_{B}T} = \prod_{i} e^{(\mu - \epsilon_{j})N_{j}/k_{B}T}$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Fermi-Dirac statistics

• because particle number operators commute $e^{(\mu N - H)/k_{B}T} = \prod_{i} e^{(\mu - \epsilon_{j})N_{j}/k_{B}T}$

• work out the trace, i. e. sum over eigenvalues n = 0, 1tr $e^{(\mu N - H)/k_{\rm B}T} = \prod_{j} \left(1 + e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Fermi-Dirac statistics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- because particle number operators commute $e^{(\mu N - H)/k_{B}T} = \prod_{i} e^{(\mu - \epsilon_{j})N_{j}/k_{B}T}$
- work out the trace, i. e. sum over eigenvalues n = 0, 1tr $e^{(\mu N - H)/k_{\rm B}T} = \prod_{j} \left(1 + e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$

$$F = -k_{\rm B}T \sum_{j} \ln\left(1 + e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Fermi-Dirac statistics

- because particle number operators commute $e^{(\mu N - H)/k_{B}T} = \prod_{i} e^{(\mu - \epsilon_{j})N_{j}/k_{B}T}$
- work out the trace, i. e. sum over eigenvalues n = 0, 1tr $e^{(\mu N - H)/k_{\rm B}T} = \prod_{j} \left(1 + e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$
- free energy

$$F = -k_{\rm B}T \sum_{j} \ln\left(1 + e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$$

• in $[\epsilon, \epsilon + \mathrm{d}\epsilon]$ there are $V \, z(\epsilon) \, \mathrm{d}\epsilon$ single particle states

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Fermi-Dirac statistics

- because particle number operators commute $e^{(\mu N - H)/k_{B}T} = \prod_{i} e^{(\mu - \epsilon_{j})N_{j}/k_{B}T}$
- work out the trace, i. e. sum over eigenvalues n = 0, 1tr $e^{(\mu N - H)/k_{\rm B}T} = \prod_{j} \left(1 + e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$
- free energy

$$F = -k_{\rm B}T \sum_{j} \ln\left(1 + e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$$

- in $[\epsilon, \epsilon + d\epsilon]$ there are $V z(\epsilon) d\epsilon$ single particle states
- one may write

$$F = -k_{B}TV \int d\epsilon \ z(\epsilon) \ln \left(1 + e^{(\mu - \epsilon)/k_{B}T}\right)$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

э

Enrico Fermi, Italian/USA physicist, 1901-1954

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

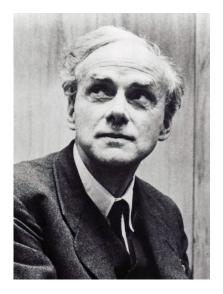
Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation



・ロト ・ 一 ト ・ モト ・ モト

æ

Paul Dirac, Britisch physicist, 1902-1984

Peter Hertel

Non-relativistic fermions

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• sum over states (factor 2 for spin) $\sum_{j} = 2 \int \frac{\mathrm{d}^{3} x \, \mathrm{d}^{3} p}{(2\pi\hbar)^{3}}$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Non-relativistic fermions

• sum over states (factor 2 for spin) $\sum_{j} = 2 \int \frac{d^{3}x d^{3}p}{(2\pi\hbar)^{3}}$ • $\epsilon = p^{2}/2m$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Non-relativistic fermions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

• sum over states (factor 2 for spin) $\sum_{j} = 2 \int \frac{d^{3}x d^{3}p}{(2\pi\hbar)^{3}}$ • $\epsilon = p^{2}/2m$

$$\sum_{j} = V \int d\epsilon z(\epsilon)$$
$$= V \frac{1}{\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int d\epsilon \sqrt{\epsilon}$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Particle density and pressure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

recall

$$\mathcal{F} = -k_{\mathsf{B}}TV\int\mathrm{d}\epsilon\,z(\epsilon)\,\ln\,\left(1+\,e^{\,\left(\mu\,-\,\epsilon
ight)/\mathsf{k}_{\mathsf{B}}T\,
ight)$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Particle density and pressure

recall

n(

$$F = -k_{\rm B}TV \int \mathrm{d}\epsilon \, z(\epsilon) \, \ln \left(1 + \, e^{\left(\mu - \epsilon\right)/k_{\rm B}T}\right)$$

• particle density is

$$T, \mu) = -\frac{1}{V} \frac{\partial F}{\partial \mu}$$

= $\int d\epsilon z(\epsilon) \frac{1}{e^{(\epsilon - \mu)/k_{\rm B}T} + 1}$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Particle density and pressure

recall

$$F = -k_{B}TV \int d\epsilon \, z(\epsilon) \, \ln \left(1 + \, e^{\left(\mu - \epsilon\right)/k_{B}T}\right)$$

• particle density is

$$n(T,\mu) = -\frac{1}{V} \frac{\partial F}{\partial \mu}$$
$$= \int d\epsilon \, z(\epsilon) \, \frac{1}{e^{(\epsilon - \mu)/k_{\rm B}T} + 1}$$

• pressure is

$$p = -\frac{\partial F}{\partial V}$$

= $k_{B}T \int d\epsilon z(\epsilon) \ln \left(1 + e^{(\mu - \epsilon)/k_{B}T}\right)$
= $\frac{2}{3} \int d\epsilon z(\epsilon) \frac{\epsilon}{e^{(\epsilon - \mu)/k_{B}T} + 1}$

SQC

3

Peter Hertel

Fundament particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Zero temperature

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

$$\frac{\text{if } T \to 0}{\frac{1}{e^{(\epsilon - \mu)/k_{\text{B}}T} + 1}} = \theta(\mu - \epsilon)$$

Peter Hertel

- Fundamenta particles
- Spin and statistics
- Many particles
- Gibbs state
- Fermions

Zero temperature

- White dwarf and neutron stars
- Bosons
- Black body radiation
- Bose-Einstein condensation

Zero temperature

if
$$T
ightarrow 0$$

 $rac{1}{e^{(\epsilon-\mu)/\mathsf{k}_{\mathsf{B}}T}+1} = heta(\mu-\epsilon)$

• particle density

$$n(0,\mu) = \int_{-\infty}^{\mu} \mathrm{d}\epsilon \, z(\epsilon)$$

Peter Hertel

- Fundamenta particles
- Spin and statistics
- Many particles
- Gibbs state
- Fermions

Zero temperature

- White dwarf and neutron stars
- Bosons
- Black body radiation
- Bose-Einstein condensation

Zero temperature

if
$$T \rightarrow 0$$

 $\frac{1}{e^{(\epsilon - \mu)/k_{B}T} + 1} = \theta(\mu - \epsilon)$

• particle density

$$n(0,\mu) = \int_{-\infty}^{\mu} \mathrm{d}\epsilon \, z(\epsilon)$$

pressure

$$p(0,\mu) = rac{2}{3} \int_{-\infty}^{\mu} \mathrm{d}\epsilon \, z(\epsilon) \, \epsilon$$

Peter Hertel

- Fundamenta particles
- Spin and statistics
- Many particles
- Gibbs state
- Fermions

Zero temperature

- White dwarfs and neutron stars
- Bosons
- Black body radiation
- Bose-Einstein condensation

Zero temperature

・ロット (雪) (日) (日) (日)

if
$$T \rightarrow 0$$

 $\frac{1}{e^{(\epsilon - \mu)/k_{B}T} + 1} = \theta(\mu - \epsilon)$

• particle density

$$n(0,\mu) = \int_{-\infty}^{\mu} \mathrm{d}\epsilon \, z(\epsilon)$$

pressure

$$p(0,\mu) = \frac{2}{3} \int_{-\infty}^{\mu} \mathrm{d}\epsilon \, z(\epsilon) \, \epsilon$$

• if particle density \bar{n} is given, then $\bar{n} = n(0, \epsilon_{\rm F}) = \int_{-\infty}^{\epsilon_{\rm F}} \mathrm{d}\epsilon \, z(\epsilon)$ defines Fermi energy

Atoms and so forth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• Periodic system

Atoms and so forth

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

- Periodic system
- from small to huge molecules

Atoms and so forth

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

- Periodic system
- from small to huge molecules
- dielectrics, conductors, semiconductors, ferromagnets

Atoms and so forth

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

- Periodic system
- from small to huge molecules
- dielectrics, conductors, semiconductors, ferromagnets
- stability of normal matter

Atoms and so forth

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

- Periodic system
- from small to huge molecules
- dielectrics, conductors, semiconductors, ferromagnets
- stability of normal matter
- stars can be stable even at T = 0

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Hydrodynamic equilibrium

• The mass within a sphere of radius R is $M(r) = 4\pi \int_0^r \mathrm{d}s \, s^2 \rho(s)$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Hydrodynamic equilibrium

• The mass within a sphere of radius R is $M(r) = 4\pi \int_0^r \mathrm{d}s \, s^2 \rho(s)$

• gravitational force per unit volume

$$f(r) = -G \, \frac{\rho(r)M(r)}{r^2}$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Hydrodynamic equilibrium

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- The mass within a sphere of radius R is $M(r) = 4\pi \int_0^r \mathrm{d}s \, s^2 \rho(s)$
- gravitational force per unit volume

$$f(r) = -G \, \frac{\rho(r)M(r)}{r^2}$$

• pressure gradient and force must balance

$$p'(r)=f(r)$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Hydrodynamic equilibrium

▲□▼▲□▼▲□▼▲□▼ □ ● ●

• The mass within a sphere of radius R is $M(r) = 4\pi \int_0^r \mathrm{d}s \, s^2 \rho(s)$

• gravitational force per unit volume

$$f(r) = -G \, \frac{\rho(r)M(r)}{r^2}$$

• pressure gradient and force must balance

p'(r) = f(r)

• relate pressure with mass density

Equation of state

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• electron gas at T = 0

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Equation of state

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• electron gas at
$$T = 0$$

• recall
 $z(\epsilon) = \frac{1}{\pi^2} \left\{ \frac{2m}{\hbar^2} \right\}^{3/2} \sqrt{\epsilon}$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• electron gas at T = 0

recall

$$z(\epsilon) = rac{1}{\pi^2} \left\{ rac{2m}{\hbar^2}
ight\}^{3/2} \sqrt{\epsilon}$$

• particle density

$$n(0,\mu) = \frac{2}{3\pi^2} \left\{ \frac{2m}{\hbar^2} \right\}^{3/2} \mu^{3/2}$$

Equation of state

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Equation of state

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

- electron gas at T = 0
- recall

$$z(\epsilon) = \frac{1}{\pi^2} \left\{ \frac{2m}{\hbar^2} \right\}^{3/2} \sqrt{\epsilon}$$

particle density

$$n(0,\mu) = \frac{2}{3\pi^2} \left\{ \frac{2m}{\hbar^2} \right\}^{3/2} \mu^{3/2}$$

pressure

$$p(0,\mu) = rac{4}{15\pi^2} \left\{rac{2m}{\hbar^2}
ight\}^{3/2} \mu^{5/2}$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperatur

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Equation of state

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- electron gas at T = 0
 recall
 - $z(\epsilon) = \frac{1}{\pi^2} \left\{ \frac{2m}{\hbar^2} \right\}^{3/2} \sqrt{\epsilon}$
- particle density

$$n(0,\mu) = rac{2}{3\pi^2} \left\{rac{2m}{\hbar^2}
ight\}^{3/2} \mu^{3/2}$$

pressure

$$p(0,\mu) = rac{4}{15\pi^2} \left\{rac{2m}{\hbar^2}
ight\}^{3/2} \mu^{5/2}$$

• eliminate chemical potential \hbar^2 = 10

$$p = a \frac{n}{m} n^{5/3}$$
 where $a = 1.2058$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperatur

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Equation of state

• electron gas at
$$T = 0$$

recall

$$z(\epsilon) = rac{1}{\pi^2} \left\{ rac{2m}{\hbar^2}
ight\}^{3/2} \sqrt{\epsilon}$$

particle density

$$n(0,\mu) = rac{2}{3\pi^2} \left\{ rac{2m}{\hbar^2}
ight\}^{3/2} \mu^{3/2}$$

pressure

$$p(0,\mu) = rac{4}{15\pi^2} \left\{rac{2m}{\hbar^2}
ight\}^{3/2} \mu^{5/2}$$

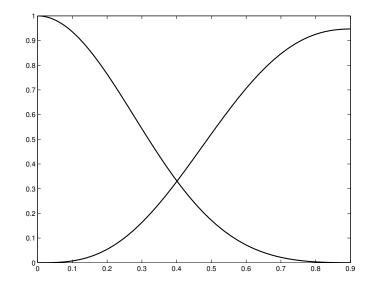
• eliminate chemical potential

$$p = a \frac{\hbar^2}{m} n^{5/3}$$
 where $a = 1.2058$

• since one electron is related with two nucleons $p = a \frac{\hbar^2}{m_{\rm e}} \left\{ \frac{\rho}{2m_{\rm p}} \right\}^{5/3}$

Black bod radiation

Bose-Einstein condensation



Pressure p (decreasing) and mass M (increasing) of a white dwarf vs. distance r from the center in natural units. We have assumed zero temperature, two nucleons per electron which are treated non-relativistically. r = 1 corresponds to 6500 km, M = 1 to 0.85 sun masses.

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation



Crab nebula, the cloud of debris of the 1054 supernova

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

There is a neutron star (pulsar) at its center.

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

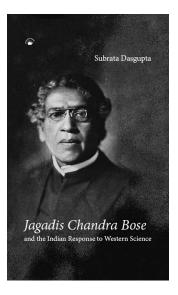
Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation



Jagadris Chandra Bose, Indian physicist, 1858-1937

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• bosons have integer spin or integer helicity

Bosons

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• bosons have integer spin or integer helicity

• such as the photon

Bosons

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hertel

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Bosons

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- bosons have integer spin or integer helicity
- such as the photon
- such as $(q\bar{q})$ states mesons

Bosons

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

- Black body radiation
- Bose-Einstein condensation

- bosons have integer spin or integer helicity
- such as the photon
- such as $(q\bar{q})$ states mesons
- or (ee) Cooper pairs

Bosons

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperatur
- White dwarfs and neutron stars

- Black body radiation
- Bose-Einstein condensation

- bosons have integer spin or integer helicity
- such as the photon
- such as $(q\bar{q})$ states mesons
- or (ee) Cooper pairs
- or (ppnn), the helium nucleus or helium atom

Bosons

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperatur
- White dwarfs and neutron stars

- Black body radiation
- Bose-Einstein condensation

- bosons have integer spin or integer helicity
- such as the photon
- such as $(q\bar{q})$ states mesons
- or (ee) Cooper pairs
- or (ppnn), the helium nucleus or helium atom
- or phonons, the quanta of lattice vibrations

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Many bosons

• recall the spin/statistics theorem

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

Bosons

Black body radiation

- recall the spin/statistics theorem
- $[A_j, A_k] = [A_j^*, A_k^*] = 0$ commutators!

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

Bosons

Black body radiation

- recall the spin/statistics theorem
- $[A_j, A_k] = [A_j^*, A_k^*] = 0$ commutators!
- $[A_j, A_k^*] = \delta_{jk} I$

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

Bosons

Black body radiation

- recall the spin/statistics theorem
- $[A_j, A_k] = [A_j^*, A_k^*] = 0$ commutators!
- $[A_j, A_k^*] = \delta_{jk} I$
- $N_j = A_j^*, A_j$ number of particles in state j

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

- Black body radiation
- Bose-Einstein condensation

- recall the spin/statistics theorem
- $[A_j, A_k] = [A_j^*, A_k^*] = 0$ commutators!
- $[A_j, A_k^*] = \delta_{jk} I$
- $N_j = A_j^*, A_j$ number of particles in state j
- eigenvalues are $n = 0, 1, 2, \ldots$

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperatur
- White dwarfs and neutron stars

- Black body radiation
- Bose-Einstein condensation

- recall the spin/statistics theorem
- $[A_j, A_k] = [A_j^*, A_k^*] = 0$ commutators!
- $[A_j, A_k^*] = \delta_{jk} I$
- $N_j = A_i^*, A_j$ number of particles in state j
- eigenvalues are $n = 0, 1, 2, \ldots$
- work out the trace, i. e. sum over eigenvalues n = 0, 1, 2, ...

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperatur
- White dwarfs and neutron stars

- Black body radiation
- Bose-Einstein condensation

- recall the spin/statistics theorem
- $[A_j, A_k] = [A_j^*, A_k^*] = 0$ commutators!
- $[A_j, A_k^*] = \delta_{jk} I$
- $N_j = A_i^*, A_j$ number of particles in state j
- eigenvalues are $n = 0, 1, 2, \ldots$
- work out the trace, i. e. sum over eigenvalues n = 0, 1, 2, ...
- $N = \sum_{j} N_{j}$ total number of indistinguishable particles

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Free energy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• energy is $H = \sum_j \epsilon_j A_j^* A_j + \dots$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Free energy

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

• energy is
$$H = \sum_{j} \epsilon_j A_j^* A_j + \dots$$

• free energy is

$$F = -k_{\rm B}T \ln {
m tr} ~ e^{\left(\mu N - H
ight)/k_{\rm B}T}$$

Free energy

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

• energy is
$$H = \sum_j \epsilon_j A_j^* A_j + \dots$$

• free energy is

$$F = -k_{\rm B}T \ln {
m tr} \ e^{(\mu N - H)/k_{\rm B}T}$$

• N_i commute, therefore

$$e^{(\mu N - H)/k_{\rm B}T} = \prod_{j} e^{(\mu - \epsilon_j)N_j/k_{\rm B}T}$$

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Free energy

• energy is
$$H = \sum_j \epsilon_j A_j^* A_j + \dots$$

• free energy is

$$F = -k_{\rm B}T \ln {
m tr} \ {
m e}^{\left(\mu N - H\right)/k_{\rm B}T}$$

•
$$N_j$$
 commute, therefore
 $e^{(\mu N - H)/k_{\rm B}T} = \prod_j e^{(\mu - \epsilon_j)N_j/k_{\rm B}T}$

work out the trace, i. e. sum over eigenvalues
 n = 0, 1, 2, ...

tr
$$e^{(\mu - \epsilon_j)N_j/k_BT} = \sum_{n=0}^{\infty} \left\{ e^{(\mu - \epsilon_j)/k_BT} \right\}^n$$

= $\frac{1}{1 - e^{(\mu - \epsilon_j)/k_BT}}$

Fermions, Bosons and their Statistics

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Peter Hertel

- Fundamenta particles
- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Free energy ctd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• the free energy of a boson gas is $F = k_{\rm B}T \sum \ln \left(1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$

$$= k_{\rm B}T \sum_{j} \ln \left(1 - e^{(\mu - \epsilon)/k_{\rm B}T}\right)$$
$$= k_{\rm B}T V \int d\epsilon z(\epsilon) \ln \left(1 - e^{(\mu - \epsilon)/k_{\rm B}T}\right)$$

Peter Hertel

- Fundamenta particles
- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarf and neutron stars

Bosons

- Black body radiation
- Bose-Einstein condensation

Free energy ctd.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

• the free energy of a boson gas is $F = k_{\rm B}T \sum_{j} \ln \left(1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$ $= k_{\rm B}T V \left(\int de_{\rm C}(x) \ln \left(1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)\right)$

$$= k_{\rm B}T V \int d\epsilon z(\epsilon) \ln \left(1 - e^{(\mu - \epsilon)/\kappa_{\rm B}T}\right)$$

• compare with the free energy of a fermi gas

$${\cal F} = -{\sf k}_{\sf B} {\cal T} \; {\cal V} \int {
m d} \epsilon \, z(\epsilon) \, \ln \, \left(1 + \, e^{\left(\mu \, - \, \epsilon
ight) / {\sf k}_{\sf B} {\cal T}} \,
ight)$$

Peter Hertel

- Fundamenta particles
- Spin and statistics
- Many particles
- Gibbs state
- Fermions
- Zero temperature
- White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Free energy ctd.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- the free energy of a boson gas is $F = k_{\rm B}T \sum_{j} \ln \left(1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}\right)$ $= k_{\rm B}T V \int d\epsilon z(\epsilon) \ln \left(1 - e^{(\mu - \epsilon)/k_{\rm B}T}\right)$
 - compare with the free energy of a fermi gas $F = -k_{\rm B}T V \int d\epsilon \, z(\epsilon) \ln \left(1 + e^{(\mu \epsilon)/k_{\rm B}T}\right)$
- recall spin/statistics theorem: again the +/- difference

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Black body radiation

• photon energy is
$$\hbar\omega=
ho c$$

$$2\int \frac{\mathrm{d}^3 x \,\mathrm{d}^3 p}{(2\pi\hbar)^3} = V \int \frac{\mathrm{d}\omega \,\omega^2}{\pi^2 c^3}$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Black body radiation

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

• photon energy is
$$\hbar\omega=
ho c$$

$$2\int \frac{\mathrm{d}^3 x \,\mathrm{d}^3 p}{(2\pi\hbar)^3} = V \int \frac{\mathrm{d}\omega \,\omega^2}{\pi^2 c^3}$$

$$\mu = 0$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Black body radiation

• photon energy is
$$\hbar\omega = pc$$

$$2\int \frac{\mathrm{d}^3 x \,\mathrm{d}^3 p}{(2\pi\hbar)^3} = V \int \frac{\mathrm{d}\omega \,\omega^2}{\pi^2 c^3}$$
$$\mu = 0$$

• black body free energy is

$$F = k_{\rm B}T V \int_0^\infty \frac{{\rm d}\omega \, \omega^2}{\pi^2 c^3} \ln \left(1 - e^{-\hbar\omega/k_{\rm B}T}\right)$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarf and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Black body radiation

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

• photon energy is
$$\hbar\omega = pc$$

• density of states can be read off from

$$2\int \frac{\mathrm{d}^3 x \,\mathrm{d}^3 p}{(2\pi\hbar)^3} = V \int \frac{\mathrm{d}\omega \,\omega^2}{\pi^2 c^3}$$
$$\mu = 0$$

b black body free energy is

$$F = k_{\rm B}T V \int_0^\infty \frac{{\rm d}\omega \,\omega^2}{\pi^2 c^3} \ln \left(1 - e^{-\hbar\omega/k_{\rm B}T}\right)$$

• internal energy U

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Black body radiation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• photon energy is
$$\hbar\omega=
ho c$$

$$2\int \frac{\mathrm{d}^3 x \,\mathrm{d}^3 p}{(2\pi\hbar)^3} = V \int \frac{\mathrm{d}\omega \,\omega^2}{\pi^2 c^3}$$
$$\mu = 0$$

$$F = k_{\rm B}T V \int_0^\infty \frac{\mathrm{d}\omega \, \omega^2}{\pi^2 c^3} \ln \left(1 - e^{-\hbar\omega/k_{\rm B}T}\right)$$

- internal energy U
- $U = F + TS = F T\partial F / \partial T$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Black body radiation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

• photon energy is
$$\hbar\omega = pc$$

$$2\int \frac{\mathrm{d}^3 x \,\mathrm{d}^3 p}{(2\pi\hbar)^3} = V \int \frac{\mathrm{d}\omega \,\omega^2}{\pi^2 c^3}$$
$$\mu = 0$$

$$F = k_{\rm B}T V \int_0^\infty \frac{\mathrm{d}\omega \, \omega^2}{\pi^2 c^3} \ln \left(1 - e^{-\hbar\omega/k_{\rm B}T}\right)$$

- internal energy U
- $U = F + TS = F T\partial F / \partial T$
- Planck's formula

$$U = V \int_0^\infty \frac{\mathrm{d}\omega \,\omega^2}{\pi^2 c^3} \, \frac{\hbar\omega}{e^{\hbar\omega/k_\mathrm{B}T} - \frac{1}{2}}$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

<ロト <回ト < 注ト < 注ト

Max Planck, German physicist, 1858-1947

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Particle density

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

recall

$$\sum_{n=0}^{\infty} e^{n(\mu - \epsilon_j)/k_{\rm B}T} = \frac{1}{1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}}$$

Peter Hertel

.

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Particle density

$$\sum_{n=0}^{\infty} e^{n(\mu - \epsilon_j)/k_{\rm B}T} = \frac{1}{1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}}$$

• valid only if $\mu < \min \epsilon_j = 0$

Particle density

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

their Statistics Peter Hertel

Fermions, Bosons and

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• recall

$$\sum_{n=0}^{\infty} e^{n(\mu - \epsilon_j)/k_{\rm B}T} = \frac{1}{1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}}$$

• valid only if $\mu < \min \epsilon_j = 0$

• $-\partial F/\partial \mu = \bar{N}$ is average particle number

Particle density

Statistics Peter Hertel

Fermions, Bosons and

their

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperatur

White dwarf and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• recall

$$\sum_{n=0}^{\infty} e^{n(\mu - \epsilon_j)/k_{\rm B}T} = \frac{1}{1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}}$$

• valid only if $\mu < \min \epsilon_j = 0$

•
$$-\partial F/\partial \mu = \bar{N}$$
 is average particle number

• the average particle density \bar{n} is therefore $\bar{n}(T,\mu) = \int_0^\infty d\epsilon \, z(\epsilon) \, \frac{1}{e^{(\epsilon-\mu)/k_{\rm B}T} - 1}$

Particle density

their Statistics Peter Hertel

Fermions, Bosons and

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperatur

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

• recall

$$\sum_{n=0}^{\infty} e^{n(\mu - \epsilon_j)/k_{\rm B}T} = \frac{1}{1 - e^{(\mu - \epsilon_j)/k_{\rm B}T}}$$

• valid only if $\mu < \min \epsilon_j = 0$

•
$$-\partial F/\partial \mu = \bar{N}$$
 is average particle number

• the average particle density \bar{n} is therefore $\bar{n}(T,\mu) = \int_0^\infty d\epsilon \, z(\epsilon) \, \frac{1}{e^{(\epsilon-\mu)/k_BT} - 1}$

• $\bar{n}(T,0)$ is maximal density:

$$\bar{n}_{\max}(T) = \int_0^\infty \mathrm{d}\epsilon \, z(\epsilon) \, \frac{1}{e^{\epsilon/\mathsf{k}_\mathsf{B}T} - 1}$$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Bose-Einstein condensation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• If T decreases, so does $\bar{n}_{max}(T)$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Bose-Einstein condensation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- If T decreases, so does $ar{n}_{ ext{max}}(T)$
- if \bar{n} is given, there is a temperature ${\cal T}_{\rm c}$ such that $\bar{n}_{\rm max}({\cal T}_{\rm c})=\bar{n}$

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Bose-Einstein condensation

- If T decreases, so does $ar{n}_{\max}(T)$
- if \bar{n} is given, there is a temperature ${\cal T}_{\rm c}$ such that $\bar{n}_{\rm max}({\cal T}_{\rm c})=\bar{n}$
- for even lower temperature, only a fraction of the particles are in thermal equilibrium

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Bose-Einstein condensation

- If ${\mathcal T}$ decreases, so does $ar{n}_{\max}({\mathcal T})$
- if \bar{n} is given, there is a temperature $T_{\rm c}$ such that $\bar{n}_{\rm max}(T_{\rm c})=\bar{n}$
- for even lower temperature, only a fraction of the particles are in thermal equilibrium

• the rest is in the multiply occupied ground state

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Bose-Einstein condensation

- If ${\mathcal T}$ decreases, so does $ar{n}_{\max}({\mathcal T})$
- if \bar{n} is given, there is a temperature $T_{\rm c}$ such that $\bar{n}_{\rm max}(T_{\rm c})=\bar{n}$
- for even lower temperature, only a fraction of the particles are in thermal equilibrium

- the rest is in the multiply occupied ground state
- supra-fluidity

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Bose-Einstein condensation

- If T decreases, so does $ar{n}_{\max}(T)$
- if \bar{n} is given, there is a temperature $T_{\rm c}$ such that $\bar{n}_{\rm max}(T_{\rm c})=\bar{n}$
- for even lower temperature, only a fraction of the particles are in thermal equilibrium

- the rest is in the multiply occupied ground state
- supra-fluidity
- superconductivity

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation

Bose-Einstein condensation

- If ${\mathcal T}$ decreases, so does $ar{n}_{\max}({\mathcal T})$
- if \bar{n} is given, there is a temperature $T_{\rm c}$ such that $\bar{n}_{\rm max}(T_{\rm c})=\bar{n}$
- for even lower temperature, only a fraction of the particles are in thermal equilibrium

- the rest is in the multiply occupied ground state
- supra-fluidity
- superconductivity
- light

Peter Hertel

Fundamenta particles

Spin and statistics

Many particles

Gibbs state

Fermions

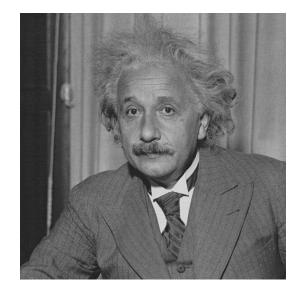
Zero temperature

White dwarfs and neutron stars

Bosons

Black body radiation

Bose-Einstein condensation



・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

Albert Einstein, German physicist, 1879-1955