Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

The Drude Model

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

October/November 2011

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

イロト イロト イヨト イヨト 三日

Paul Drude, German physicist, 1863-1906

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• The Drude model links optical and electric properties of a material with the behavior of its electrons or holes

Peter Hertel

Overview

Model

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- The Drude model links optical and electric properties of a material with the behavior of its electrons or holes
- The model

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

- The Drude model links optical and electric properties of a material with the behavior of its electrons or holes
- The model
- Dielectric permittivity

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

- The Drude model links optical and electric properties of a material with the behavior of its electrons or holes
- The model
- Dielectric permittivity
- Permittivity of metals

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• The Drude model links optical and electric properties of a material with the behavior of its electrons or holes

Overview

- The model
- Dielectric permittivity
- Permittivity of metals
- Conductivity

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • The Drude model links optical and electric properties of a material with the behavior of its electrons or holes

Overview

- The model
- Dielectric permittivity
- Permittivity of metals
- Conductivity
- Faraday effect

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • The Drude model links optical and electric properties of a material with the behavior of its electrons or holes

Overview

- The model
- Dielectric permittivity
- Permittivity of metals
- Conductivity
- Faraday effect
- Hall effect

Overviev

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

◆□> <□> < Ξ> < Ξ> < Ξ> < Ξ</p>

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• consider a typical electron

Model

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- consider a typical electron
- denote by $\boldsymbol{x} = \boldsymbol{x}(t)$ the deviation from its equilibrium position

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- consider a typical electron
- denote by $\boldsymbol{x} = \boldsymbol{x}(t)$ the deviation from its equilibrium position
- external electric field strength $\boldsymbol{E} = \boldsymbol{E}(t)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- consider a typical electron
- denote by $\boldsymbol{x} = \boldsymbol{x}(t)$ the deviation from its equilibrium position

Model

- external electric field strength $\boldsymbol{E} = \boldsymbol{E}(t)$
- $m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- consider a typical electron
- denote by $\boldsymbol{x} = \boldsymbol{x}(t)$ the deviation from its equilibrium position

Model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- external electric field strength $\boldsymbol{E} = \boldsymbol{E}(t)$
- $m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$
- electron mass m, charge q, friction coefficient $m\Gamma,$ spring constant $m\Omega^2$

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- consider a typical electron
- denote by $\boldsymbol{x} = \boldsymbol{x}(t)$ the deviation from its equilibrium position

Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- external electric field strength $\boldsymbol{E} = \boldsymbol{E}(t)$
- $m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$
- electron mass m, charge q, friction coefficient $m\Gamma,$ spring constant $m\Omega^2$
- Fourier transform this

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- consider a typical electron
- denote by $\boldsymbol{x} = \boldsymbol{x}(t)$ the deviation from its equilibrium position
- external electric field strength $\boldsymbol{E} = \boldsymbol{E}(t)$
- $m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$
- electron mass m, charge q, friction coefficient $m\Gamma,$ spring constant $m\Omega^2$
- Fourier transform this
- $m(-\omega^2 i\omega\Gamma + \Omega^2)\tilde{x} = q\tilde{E}$

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- consider a typical electron
- denote by $\boldsymbol{x} = \boldsymbol{x}(t)$ the deviation from its equilibrium position
- external electric field strength $\boldsymbol{E} = \boldsymbol{E}(t)$
- $m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$
- electron mass m, charge q, friction coefficient $m\Gamma,$ spring constant $m\Omega^2$
- Fourier transform this
- $m(-\omega^2 i\omega\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q\tilde{\boldsymbol{E}}$
- solution is

$$\tilde{\boldsymbol{x}}(\omega) = rac{q}{m} rac{\tilde{\boldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• dipole moment of typical electron is $ilde{m{p}}=q ilde{m{x}}$

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- dipole moment of typical electron is $ilde{m{p}}=q ilde{m{x}}$
- recall

$$ilde{oldsymbol{x}}(\omega) = rac{q}{m} rac{ ilde{oldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• dipole moment of typical electron is $\tilde{p} = q\tilde{x}$ • recall

$$\tilde{\boldsymbol{x}}(\omega) = \frac{q}{m} \frac{\tilde{\boldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

 $\bullet\,$ there are N typical electrons per unit volume

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • dipole moment of typical electron is $\tilde{p} = q\tilde{x}$ • recall

$$\tilde{\boldsymbol{x}}(\omega) = \frac{q}{m} \frac{\tilde{\boldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

 $\bullet\,$ there are N typical electrons per unit volume

- polarization is
$$ilde{m{P}}=Nq ilde{m{x}}=\epsilon_0\chi ilde{m{E}}$$

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductor:

Faraday effect Hall effect • dipole moment of typical electron is $\tilde{p} = q\tilde{x}$ • recall

$$\tilde{\boldsymbol{x}}(\omega) = \frac{q}{m} \frac{\tilde{\boldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

• there are \boldsymbol{N} typical electrons per unit volume

• polarization is
$$ilde{m{P}}=Nq ilde{m{x}}=\epsilon_0\chi ilde{m{E}}$$

• susceptibility is

$$\chi(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • dipole moment of typical electron is $\tilde{p} = q\tilde{x}$ • recall

$$ilde{oldsymbol{x}}(\omega) = rac{q}{m} rac{ ilde{oldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

• there are \boldsymbol{N} typical electrons per unit volume

• polarization is
$$ilde{m{P}}=Nq ilde{m{x}}=\epsilon_0\chi ilde{m{E}}$$

• susceptibility is

$$\chi(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

in particular

$$\chi(0) = \frac{Nq^2}{\epsilon_0 m \Omega^2} > 0$$

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • dipole moment of typical electron is $\tilde{p} = q\tilde{x}$ • recall

$$ilde{oldsymbol{x}}(\omega) = rac{q}{m} rac{ ilde{oldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

• there are \boldsymbol{N} typical electrons per unit volume

- polarization is
$$ilde{m{P}}=Nq ilde{m{x}}=\epsilon_0\chi ilde{m{E}}$$

• susceptibility is

$$\chi(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

in particular

$$\chi(0) = \frac{Nq^2}{\epsilon_0 m \Omega^2} > 0$$

• ... as it should be

Peter Hertel

Overviev

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• decompose susceptibility $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$ into refractive part χ' and absorptive part χ''

Peter Hertel

Overview

Model

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- decompose susceptibility $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$ into refractive part χ' and absorptive part χ''
- Introduce $R(\omega)=\chi(\omega)/\chi(0),\,s=\omega/\Omega$ and $\gamma=\Gamma/\Omega$ as normalized quantities.

Peter Hertel

Overview

Model

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- decompose susceptibility $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$ into refractive part χ' and absorptive part χ''
- Introduce $R(\omega)=\chi(\omega)/\chi(0),\,s=\omega/\Omega$ and $\gamma=\Gamma/\Omega$ as normalized quantities.
- refraction

$$R'(s) = \frac{1 - s^2}{(1 - s^2)^2 + \gamma^2 s^2}$$

Peter Hertel

Overview

Model

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- decompose susceptibility $\chi(\omega)=\chi'(\omega)+i\chi''(\omega)$ into refractive part χ' and absorptive part χ''
- Introduce $R(\omega) = \chi(\omega)/\chi(0)$, $s = \omega/\Omega$ and $\gamma = \Gamma/\Omega$ as normalized quantities.
- refraction

$$R'(s) = \frac{1 - s^2}{(1 - s^2)^2 + \gamma^2 s^2}$$

• absorption

$$D''(s) = \frac{\gamma s}{(1 - s^2)^2 + \gamma^2 s^2}$$

Peter Hertel

Overview

Model

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- decompose susceptibility $\chi(\omega)=\chi'(\omega)+i\chi''(\omega)$ into refractive part χ' and absorptive part χ''
- Introduce $R(\omega)=\chi(\omega)/\chi(0),\,s=\omega/\Omega$ and $\gamma=\Gamma/\Omega$ as normalized quantities.
- refraction

$$R'(s) = \frac{1 - s^2}{(1 - s^2)^2 + \gamma^2 s^2}$$

• absorption

$$D''(s) = \frac{\gamma s}{(1 - s^2)^2 + \gamma^2 s^2}$$

• limiting cases: $s=0,\ s=1,\ s\to\infty,$ small γ

Refractive part (blue) and absorptive part (red) of the susceptibility function $\chi(\omega)$ scaled by the static value $\chi(0)$. The abscissa is ω/Ω . $\Gamma/\Omega = 0.1$

Peter Hertel

Overviev

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Peter Hertel

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

• For small frequencies (as compared with Ω) the susceptibility is practically real.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- For small frequencies (as compared with Ω) the susceptibility is practically real.
- This is the realm of classical optics

Peter Hertel

Overview

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- For small frequencies (as compared with Ω) the susceptibility is practically real.
- This is the realm of classical optics
- $\partial \chi / \partial \omega$ is positive normal dispersion

Peter Hertel

Overview

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- For small frequencies (as compared with Ω) the susceptibility is practically real.
- This is the realm of classical optics
- $\partial\chi/\partial\omega$ is positive normal dispersion
- In the vicinity of $\omega = \Omega$ absorption is large. Negative dispersion $\partial \chi / \partial \omega$ is accompanied by strong absorption.

Discussion II

Peter Hertel

Overview

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- For small frequencies (as compared with Ω) the susceptibility is practically real.
- This is the realm of classical optics
- $\partial\chi/\partial\omega$ is positive normal dispersion
- In the vicinity of $\omega = \Omega$ absorption is large. Negative dispersion $\partial \chi / \partial \omega$ is accompanied by strong absorption.
- For very large frequencies again absorption is negligible, and the susceptibility is negative with normal dispersion. This applies to X rays.

Discussion II

Peter Hertel

Overview

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- For small frequencies (as compared with Ω) the susceptibility is practically real.
- This is the realm of classical optics
- $\partial\chi/\partial\omega$ is positive normal dispersion
- In the vicinity of $\omega = \Omega$ absorption is large. Negative dispersion $\partial \chi / \partial \omega$ is accompanied by strong absorption.
- For very large frequencies again absorption is negligible, and the susceptibility is negative with normal dispersion. This applies to X rays.
- $\chi(\infty) = 0$ is required by first principles . . .

Kramers-Kronig relation I

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• $\chi(\omega)$ must be the Fourier transform of a causal response function $G = G(\tau)$

Kramers-Kronig relation I

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Peter Hertel

Overviev

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- $\chi(\omega)$ must be the Fourier transform of a causal response function $G=G(\tau)$
- as defined in

$$\boldsymbol{P}(t) = \epsilon_0 \int \mathrm{d}\tau G(\tau) \boldsymbol{E}(t-\tau)$$

Kramers-Kronig relation I

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hertel

Overview

Mode

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

• $\chi(\omega)$ must be the Fourier transform of a causal response function $G=G(\tau)$

Kramers-Kronig relation I

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• as defined in

$$\boldsymbol{P}(t) = \epsilon_0 \int \mathrm{d}\tau G(\tau) \boldsymbol{E}(t-\tau)$$

• check this for

$$G(\tau) = a \int \frac{\mathrm{d}\omega}{2\pi} \frac{e^{-\mathrm{i}\omega\tau}}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

Peter Hertel

Overviev

Model

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- $\chi(\omega)$ must be the Fourier transform of a causal response function $G = G(\tau)$
- as defined in

$$\boldsymbol{P}(t) = \epsilon_0 \int \mathrm{d}\tau G(\tau) \boldsymbol{E}(t-\tau)$$

check this for

$$G(\tau) = a \int \frac{\mathrm{d}\omega}{2\pi} \frac{e^{-\mathrm{i}\omega\tau}}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

poles at

$$\omega_{1,2} = -\frac{\mathrm{i}\Gamma}{2} \pm \bar{\omega}$$
 where $\bar{\omega} = +\sqrt{\Omega^2 - \Gamma^2/4}$

Kramers-Kronig relation I

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overviev

Model

- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

• $\chi(\omega)$ must be the Fourier transform of a causal response function $G = G(\tau)$

Kramers-Kronig relation I

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• as defined in

$$\boldsymbol{P}(t) = \epsilon_0 \int \mathrm{d}\tau G(\tau) \boldsymbol{E}(t-\tau)$$

check this for

$$G(\tau) = a \int \frac{\mathrm{d}\omega}{2\pi} \frac{e^{-\mathrm{i}\omega\tau}}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

poles at

$$\omega_{1,2} = -\frac{\mathrm{i}\Gamma}{2} \pm \bar{\omega}$$
 where $\bar{\omega} = +\sqrt{\Omega^2 - \Gamma^2/4}$

- Indeed, $G(\tau)=0$ for $\tau<0$

Peter Hertel

Overviev

- Model
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- $\chi(\omega)$ must be the Fourier transform of a causal response function $G = G(\tau)$
- as defined in

$$\boldsymbol{P}(t) = \epsilon_0 \int \mathrm{d}\tau G(\tau) \boldsymbol{E}(t-\tau)$$

check this for

$$G(\tau) = a \int \frac{\mathrm{d}\omega}{2\pi} \frac{e^{-\mathrm{i}\omega\tau}}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

poles at

$$\omega_{1,2} = -\frac{\mathrm{i}\Gamma}{2} \pm \bar{\omega}$$
 where $\bar{\omega} = +\sqrt{\Omega^2 - \Gamma^2/4}$

• Indeed, $G(\tau)=0$ for $\tau<0$

• for
$$\tau > 0$$

$$G(\tau) = \frac{Nq^2}{\epsilon_0 m} \frac{\sin \bar{\omega} \tau}{\bar{\omega}} e^{-\Gamma \tau/2}$$

Kramers-Kronig relation I

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kramers-Kronig relation II

Peter Hertel

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Kramers-Kronig relation II

• causal response function: $G(\tau) = \theta(\tau)G(\tau)$

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effec

Hall effect

• causal response function: $G(\tau) = \theta(\tau)G(\tau)$

• apply the convolution theorem

$$\chi(\omega) = \int \frac{\mathrm{d}u}{2\pi} \chi(u) \tilde{\theta}(\omega - u)$$

Kramers-Kronig relation II

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• causal response function: $G(\tau) = \theta(\tau)G(\tau)$

• apply the convolution theorem

$$\chi(\omega) = \int \frac{\mathrm{d}u}{2\pi} \chi(u) \tilde{\theta}(\omega - u)$$

• Fourier transform of Heaviside function is

$$\tilde{\theta}(\omega) = \lim_{0 < \eta \to 0} \frac{1}{\eta - i\omega}$$

Kramers-Kronig relation II

Kramers-Kronig relation II

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- causal response function: $G(\tau) = \theta(\tau)G(\tau)$
- apply the convolution theorem

$$\chi(\omega) = \int \frac{\mathrm{d}u}{2\pi} \chi(u) \tilde{\theta}(\omega - u)$$

• Fourier transform of Heaviside function is

$$\tilde{\theta}(\omega) = \lim_{0 < \eta \to 0} \frac{1}{\eta - \mathrm{i}\omega}$$

dispersion , or Kramers-Kronig relations

$$\chi'(\omega) = 2\Pr \int \frac{\mathrm{d}u}{\pi} \frac{u\chi''(u)}{u^2 - \omega^2}$$

Kramers-Kronig relation II

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- causal response function: $G(\tau) = \theta(\tau)G(\tau)$
- apply the convolution theorem

$$\chi(\omega) = \int \frac{\mathrm{d}u}{2\pi} \chi(u) \tilde{\theta}(\omega - u)$$

• Fourier transform of Heaviside function is

$$\tilde{\theta}(\omega) = \lim_{0 < \eta \to 0} \frac{1}{\eta - \mathrm{i}\omega}$$

dispersion , or Kramers-Kronig relations

$$\chi'(\omega) = 2\Pr \int \frac{\mathrm{d}u}{\pi} \frac{u\chi''(u)}{u^2 - \omega^2}$$

Kramers-Kronig relation II

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- causal response function: $G(\tau) = \theta(\tau)G(\tau)$
- apply the convolution theorem

$$\chi(\omega) = \int \frac{\mathrm{d}u}{2\pi} \chi(u) \tilde{\theta}(\omega - u)$$

• Fourier transform of Heaviside function is

$$\tilde{\theta}(\omega) = \lim_{0 < \eta \to 0} \frac{1}{\eta - \mathrm{i}\omega}$$

dispersion, or Kramers-Kronig relations

$$\chi'(\omega) = 2\Pr \int \frac{\mathrm{d}u}{\pi} \frac{u\chi''(u)}{u^2 - \omega^2}$$
$$\chi''(\omega) = 2\Pr \int \frac{\mathrm{d}u}{\pi} \frac{\omega\chi'(u)}{\omega^2 - u^2}$$

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

イロト イ理ト イヨト イヨト

æ

Dispersion of white light

Free quasi-electrons

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ ○ ○ ○

Peter Hertel

Overviev

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• consider a typical conduction band electron

Free quasi-electrons

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

- consider a typical conduction band electron
- it behaves as a free quasi-particle

Free quasi-electrons

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• consider a typical conduction band electron

Free quasi-electrons

• it behaves as a free quasi-particle

• recall
$$m(\ddot{\pmb{x}} + \Gamma\dot{\pmb{x}} + \Omega^2 \pmb{x}) = q\pmb{E}$$

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• consider a typical conduction band electron

Free quasi-electrons

- it behaves as a free quasi-particle
- recall $m(\ddot{\pmb{x}} + \Gamma\dot{\pmb{x}} + \Omega^2 \pmb{x}) = q\pmb{E}$
- spring constant $m\Omega^2$ vanishes

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

· consider a typical conduction band electron

- it behaves as a free quasi-particle
- recall $m(\ddot{\pmb{x}} + \Gamma\dot{\pmb{x}} + \Omega^2 \pmb{x}) = q\pmb{E}$
- spring constant $m\Omega^2$ vanishes
- *m* is effective mass

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- · consider a typical conduction band electron
- it behaves as a free quasi-particle

- recall $m(\ddot{\pmb{x}} + \Gamma\dot{\pmb{x}} + \Omega^2 \pmb{x}) = q\pmb{E}$
- spring constant $m\Omega^2$ vanishes
- m is effective mass
- therefore

$$\epsilon(\omega) = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + \mathrm{i}\omega\Gamma}$$

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- · consider a typical conduction band electron
- it behaves as a free quasi-particle

0

- recall $m(\ddot{\pmb{x}} + \Gamma\dot{\pmb{x}} + \Omega^2 \pmb{x}) = q\pmb{E}$
- spring constant $m\Omega^2$ vanishes
- m is effective mass
- therefore

$$\epsilon(\omega) = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + \mathrm{i}\omega\Gamma}$$

• plasma frequency ω_{p}

$$\omega_{\rm p}^2 = \frac{Nq^2}{\epsilon_0 m}$$

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • consider a typical conduction band electron

• it behaves as a free quasi-particle

0

- recall $m(\ddot{\pmb{x}} + \Gamma\dot{\pmb{x}} + \Omega^2 \pmb{x}) = q\pmb{E}$
- spring constant $m\Omega^2$ vanishes
- m is effective mass
- therefore

$$\epsilon(\omega) = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + i\omega\Gamma}$$

• plasma frequency ω_{p}

$$\omega_{\rm p}^2 = \frac{Nq^2}{\epsilon_0 m}$$

- correction for $\omega\gg\omega_{\rm p}$

$$\epsilon(\omega) = \epsilon_{\infty} - \frac{\omega_{\rm p}^2}{\omega^2 + i\omega\Gamma}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example: gold

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• Drude model parameters for gold

Example: gold

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

Example: gold

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972

•
$$\epsilon_{\infty} = 9.5$$

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972

Example: gold

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\epsilon_{\infty} = 9.5$
- $\hbar\omega_{
 m p}=$ 8.95 eV

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972
- $\epsilon_{\infty} = 9.5$

•
$$\hbar\omega_{
m p}=$$
 8.95 eV

•
$$\hbar\Gamma = 0.069 \text{ eV}$$

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972

Example: gold

- $\epsilon_{\infty} = 9.5$
- $\hbar\omega_{
 m p}=$ 8.95 eV
- $\hbar\Gamma = 0.069 \text{ eV}$
- with these parameters the Drude model fits optical measurements well for $\hbar\omega$ < 2.25 eV (green)
Peter Hertel

Overview

- Model
- Dielectric medium

Permittivity of metals

- Electrical conductors
- Faraday effect Hall effect

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972
- $\epsilon_{\infty} = 9.5$
- $\hbar\omega_{
 m p}=$ 8.95 eV
- $\hbar\Gamma = 0.069 \text{ eV}$
- with these parameters the Drude model fits optical measurements well for $\hbar\omega$ < 2.25 eV (green)
- The refractive part of the permittivity can be large and negative while the absorptive part is small.

Example: gold

Peter Hertel

Overview

- Model
- Dielectric medium

Permittivity of metals

- Electrical conductors
- Faraday effect Hall effect

- Drude model parameters for gold
- as determined by Johnson and Christy in 1972
- $\epsilon_{\infty} = 9.5$
- $\hbar\omega_{
 m p}=$ 8.95 eV
- $\hbar\Gamma = 0.069 \text{ eV}$
- with these parameters the Drude model fits optical measurements well for $\hbar\omega$ < 2.25 eV (green)
- The refractive part of the permittivity can be large and negative while the absorptive part is small.
- This allows surface plasmon polaritons (SPP)

Example: gold

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

Refractive (blue) and absorptive part (red) of the permittivity function for gold. The abscissa is $\hbar\omega$ in eV.

Electrical conductivity

Peter	Hertel

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

• consider a typical charged particle

Electrical conductivity

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • consider a typical charged particle

• recall $m(\ddot{\pmb{x}} + \Gamma\dot{\pmb{x}} + \Omega^2 \pmb{x}) = q\pmb{E}$

Electrical conductivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • consider a typical charged particle

- recall $m(\ddot{\pmb{x}} + \Gamma \dot{\pmb{x}} + \Omega^2 \pmb{x}) = q \pmb{E}$
- electric current density $oldsymbol{J}=Nq\dot{oldsymbol{x}}$

Electrical conductivity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- consider a typical charged particle
- recall $m(\ddot{\pmb{x}} + \Gamma\dot{\pmb{x}} + \Omega^2 \pmb{x}) = q\pmb{E}$
- electric current density $oldsymbol{J}=Nq\dot{oldsymbol{x}}$
- Fourier transformed: $\tilde{m{J}}=Nq(-\mathrm{i}\omega) ilde{m{x}}$

Electrical conductivity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- consider a typical charged particle
- recall $m(\ddot{\pmb{x}} + \Gamma \dot{\pmb{x}} + \Omega^2 \pmb{x}) = q \pmb{E}$
- electric current density $oldsymbol{J}=Nq\dot{oldsymbol{x}}$
- Fourier transformed: $\tilde{m{J}}=Nq(-\mathrm{i}\omega)\tilde{m{x}}$
- recall

$$ilde{oldsymbol{x}}(\omega) = rac{q}{m} rac{ ilde{oldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

Electrical conductivity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

- Mode
- Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- consider a typical charged particle
- recall $m(\ddot{\pmb{x}} + \Gamma \dot{\pmb{x}} + \Omega^2 \pmb{x}) = q \pmb{E}$
- electric current density $oldsymbol{J}=Nq\dot{oldsymbol{x}}$
- Fourier transformed: $\tilde{m{J}}=Nq(-\mathrm{i}\omega) ilde{m{x}}$
- recall

$$ilde{oldsymbol{x}}(\omega) = rac{q}{m} rac{ ilde{oldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

• Ohm's law $\tilde{J}(\omega) = \sigma(\omega)\tilde{E}(\omega)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- consider a typical charged particle
- recall $m(\ddot{\pmb{x}} + \Gamma \dot{\pmb{x}} + \Omega^2 \pmb{x}) = q \pmb{E}$
- electric current density $oldsymbol{J}=Nq\dot{oldsymbol{x}}$
- Fourier transformed: $ilde{m{J}} = Nq(-\mathrm{i}\omega) ilde{m{x}}$
- recall

$$ilde{oldsymbol{x}}(\omega) = rac{q}{m} rac{ ilde{oldsymbol{E}}(\omega)}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

• Ohm's law

$$\tilde{\boldsymbol{J}}(\omega) = \sigma(\omega)\tilde{\boldsymbol{E}}(\omega)$$

conductivity is

$$\sigma(\omega) = \frac{Nq^2}{m} \frac{-\mathrm{i}\omega}{\Omega^2 - \omega^2 - \mathrm{i}\omega\Gamma}$$

Electrical conductivity

Electrical conductors

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ ○ ○ ○

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect • A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
- A material with $\sigma(0) > 0$ is an electrical conductor.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
- A material with $\sigma(0) > 0$ is an electrical conductor.
- Charged particles must be free, $\Omega = 0$.

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

- A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
- A material with $\sigma(0) > 0$ is an electrical conductor.
- Charged particles must be free, $\Omega = 0$.
- which means

$$\sigma(\omega) = \frac{Nq^2}{m} \frac{1}{\Gamma - \mathrm{i}\omega}$$

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
- A material with $\sigma(0) > 0$ is an electrical conductor.
- Charged particles must be free, $\Omega = 0$.
- which means

$$\sigma(\omega) = \frac{Nq^2}{m} \frac{1}{\Gamma - \mathrm{i}\omega}$$

or

$$\frac{\sigma(\omega)}{\sigma(0)} = \frac{1}{1 - i\omega/\Gamma}$$

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect Hall effect

- A material with $\sigma(0) = 0$ is an electrical insulator. It cannot transport direct currents (DC).
- A material with $\sigma(0) > 0$ is an electrical conductor.
- Charged particles must be free, $\Omega = 0$.
- which means

$$\sigma(\omega) = \frac{Nq^2}{m} \frac{1}{\Gamma - \mathrm{i}\omega}$$

- or
 - $\frac{\sigma(\omega)}{\sigma(0)} = \frac{1}{1 i\omega/\Gamma}$
- Note that the DC conductivity is always positive.

Peter Hertel

Overview

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect Hall effect

・ロト ・四ト ・ヨト ・ヨト 三日

Georg Simon Ohm, German physicist, 1789-1854

External static magnetic field

Peter Hertel

Peter Hertel

Overviev

Mode

Dielectrie medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

• apply a quasi-static external induction ${\cal B}$

< ロ > < 団 > < 三 > < 三 > < 三 > < < ○ < ○

External static magnetic field

External static magnetic field

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

- apply a quasi-static external induction ${\cal B}$
- the typical electron obeys

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q(\boldsymbol{E} + \dot{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

External static magnetic field

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

- apply a quasi-static external induction ${\cal B}$
- the typical electron obeys

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q(\boldsymbol{E} + \dot{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

• Fourier transform this

$$m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - i\omega\tilde{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

External static magnetic field

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- apply a quasi-static external induction ${\cal B}$
- the typical electron obeys

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q(\boldsymbol{E} + \dot{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

• Fourier transform this

$$m(-\omega^2 - \mathrm{i}\omega\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - \mathrm{i}\omega\tilde{\boldsymbol{x}}\times\boldsymbol{\mathcal{B}})$$

• assume
$$\mathcal{B} = \mathcal{B} \hat{e}_z$$

External static magnetic field

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

- apply a quasi-static external induction ${\cal B}$
- the typical electron obeys

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q(\boldsymbol{E} + \dot{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

Fourier transform this

$$m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - i\omega\tilde{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

• assume
$${\cal B}={\cal B}\hat{m e}_z$$

• assume circularly polarized light

$$\tilde{\boldsymbol{\mathcal{E}}} = \tilde{E}_{\pm} \hat{\boldsymbol{e}}_{\pm}$$
 where $\hat{\boldsymbol{e}}_{\pm} = (\hat{\boldsymbol{e}}_x + \mathrm{i}\hat{\boldsymbol{e}}_y)/\sqrt{2}$

External static magnetic field

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

- apply a quasi-static external induction ${\cal B}$
- the typical electron obeys

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q(\boldsymbol{E} + \dot{\boldsymbol{x}} imes \boldsymbol{\mathcal{B}})$$

• Fourier transform this

$$m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - i\omega\tilde{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

• assume
$$oldsymbol{\mathcal{B}}=\mathcal{B}\hat{oldsymbol{e}}_{z}$$

• assume circularly polarized light

$$\tilde{\boldsymbol{\mathcal{E}}} = \tilde{E}_{\pm} \hat{\boldsymbol{e}}_{\pm}$$
 where $\hat{\boldsymbol{e}}_{\pm} = (\hat{\boldsymbol{e}}_x + \mathrm{i}\hat{\boldsymbol{e}}_y)/\sqrt{2}$

• try
$$ilde{m{x}} = ilde{x}_\pm \hat{m{e}}_\pm$$

External static magnetic field

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- apply a quasi-static external induction ${\cal B}$
- the typical electron obeys

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q(\boldsymbol{E} + \dot{\boldsymbol{x}} imes \boldsymbol{\mathcal{B}})$$

• Fourier transform this

$$m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - i\omega\tilde{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

• assume
$$oldsymbol{\mathcal{B}}=\mathcal{B}\hat{oldsymbol{e}}_{z}$$

- assume circularly polarized light $\tilde{\boldsymbol{\mathcal{E}}} = \tilde{E}_{\pm} \hat{\boldsymbol{e}}_{\pm}$ where $\hat{\boldsymbol{e}}_{\pm} = (\hat{\boldsymbol{e}}_x + \mathrm{i}\hat{\boldsymbol{e}}_y)/\sqrt{2}$
- try $ilde{m{x}} = ilde{x}_\pm \hat{m{e}}_\pm$

• note
$$\hat{m{e}}_{\pm} imes\hat{m{e}}_{z}=\mp\mathrm{i}\hat{m{e}}_{\pm}$$

External static magnetic field

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- apply a quasi-static external induction ${\cal B}$
- the typical electron obeys
 - $m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q(\boldsymbol{E} + \dot{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$
- Fourier transform this

$$m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - i\omega\tilde{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

- assume $\mathcal{B} = \mathcal{B} \hat{e}_z$
- assume circularly polarized light $\tilde{\boldsymbol{\mathcal{E}}} = \tilde{E}_{\pm} \hat{\boldsymbol{e}}_{\pm}$ where $\hat{\boldsymbol{e}}_{\pm} = (\hat{\boldsymbol{e}}_x + \mathrm{i}\hat{\boldsymbol{e}}_y)/\sqrt{2}$
- try $ilde{m{x}} = ilde{x}_\pm \hat{m{e}}_\pm$
- note $\hat{oldsymbol{e}}_{\pm} imes\hat{oldsymbol{e}}_{z}=\mp\mathrm{i}\hat{oldsymbol{e}}_{\pm}$
- therefore

$$m(-\omega^2 - \mathrm{i}\omega\Gamma + \Omega^2)\tilde{x}_{\pm} = q(\tilde{E}_{\pm} \mp \omega \mathcal{B}\tilde{x}_{\pm})$$

Faraday effect

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ ○ ○ ○

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

• $m(-\omega^2 - i\omega\Gamma + \Omega^2)\tilde{x}_+ = q(\tilde{E}_+ \mp \omega \mathcal{B}\tilde{x}_+)$

Faraday effect

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

- $m(-\omega^2 i\omega\Gamma + \Omega^2)\tilde{x}_{\pm} = q(\tilde{E}_{\pm} \mp \omega \mathcal{B}\tilde{x}_{\pm})$
- therefore

$$\tilde{x}_{\pm} = \frac{q\tilde{E}_{\pm}}{m(\Omega^2 - i\omega\Gamma - \omega^2) \pm q\omega\mathcal{B}}$$

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

- $m(-\omega^2 i\omega\Gamma + \Omega^2)\tilde{x}_{\pm} = q(\tilde{E}_{\pm} \mp \omega \mathcal{B}\tilde{x}_{\pm})$
- therefore

$$\tilde{x}_{\pm} = \frac{q\tilde{E}_{\pm}}{m(\Omega^2 - i\omega\Gamma - \omega^2) \pm q\omega\mathcal{B}}$$

recall $\tilde{P} = Nq\tilde{x} = \epsilon_0\chi\tilde{E}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- $m(-\omega^2 i\omega\Gamma + \Omega^2)\tilde{x}_{\pm} = q(\tilde{E}_{\pm} \mp \omega \mathcal{B}\tilde{x}_{\pm})$
- therefore

$$\tilde{x}_{\pm} = \frac{q\tilde{E}_{\pm}}{m(\Omega^2 - i\omega\Gamma - \omega^2) \pm q\omega\mathcal{B}}$$

- recall $\tilde{\boldsymbol{P}} = Nq\tilde{\boldsymbol{x}} = \epsilon_0\chi\tilde{\boldsymbol{E}}$
- effect of quasi-static induction \mathcal{B} is $\chi_{\pm}(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - i\omega\Gamma - \omega^2 \pm (q/m)\omega\mathcal{B}}$

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- $m(-\omega^2 i\omega\Gamma + \Omega^2)\tilde{x}_{\pm} = q(\tilde{E}_{\pm} \mp \omega \mathcal{B}\tilde{x}_{\pm})$
- therefore

$$\tilde{x}_{\pm} = \frac{q\tilde{E}_{\pm}}{m(\Omega^2 - i\omega\Gamma - \omega^2) \pm q\omega\mathcal{B}}$$

- recall $\tilde{\boldsymbol{P}} = Nq\tilde{\boldsymbol{x}} = \epsilon_0\chi\tilde{\boldsymbol{E}}$
- effect of quasi-static induction \mathcal{B} is $\chi_{\pm}(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - i\omega\Gamma - \omega^2 \pm (q/m)\omega\mathcal{B}}$
- left and right handed polarized light sees different susceptibility

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- $m(-\omega^2 i\omega\Gamma + \Omega^2)\tilde{x}_{\pm} = q(\tilde{E}_{\pm} \mp \omega \mathcal{B}\tilde{x}_{\pm})$
- therefore

$$\tilde{x}_{\pm} = \frac{q\tilde{E}_{\pm}}{m(\Omega^2 - i\omega\Gamma - \omega^2) \pm q\omega\mathcal{B}}$$

- recall $\tilde{\boldsymbol{P}} = Nq\tilde{\boldsymbol{x}} = \epsilon_0\chi\tilde{\boldsymbol{E}}$
- effect of quasi-static induction \mathcal{B} is $\chi_{\pm}(\omega) = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\Omega^2 - i\omega\Gamma - \omega^2 \pm (q/m)\omega\mathcal{B}}$
- left and right handed polarized light sees different susceptibility
- Faraday effect

Peter Hertel

Overviev

Model

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

ヘロト ヘロト ヘビト ヘビン

Michael Faraday, English physicist, 1791-1867
Remarks

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

• *B* is always small (in natural units)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

• *B* is always small (in natural units)

•
$$\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k$$

Remarks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- ${\mathcal B}$ is always small (in natural units)
- $\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k$
- linear magneto-optic effect

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- $\mathcal B$ is always small (in natural units)
- $\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k$
- linear magneto-optic effect
- Faraday constant is

$$K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - i\omega\Gamma - \omega^2)^2}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

• ${\mathcal B}$ is always small (in natural units)

Remarks

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k$
- linear magneto-optic effect
- Faraday constant is

$$K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - \mathrm{i}\omega\Gamma - \omega^2)^2}$$

•
$$K(\omega)$$
 is real in transparency window

Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- ${\mathcal B}$ is always small (in natural units)
- $\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k$
- linear magneto-optic effect
- Faraday constant is

$$K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - \mathrm{i}\omega\Gamma - \omega^2)^2}$$

- $K(\omega)$ is real in transparency window
- i. e. if ω is far away form Ω

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- $\mathcal B$ is always small (in natural units)
- $\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k$
- linear magneto-optic effect
- Faraday constant is

$$K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \frac{\omega}{(\Omega^2 - \mathrm{i}\omega\Gamma - \omega^2)^2}$$

- $K(\omega)$ is real in transparency window
- i. e. if ω is far away form Ω
- Faraday effect distinguishes between forward and backward propagation

Remarks

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- ${\mathcal B}$ is always small (in natural units)
- $\epsilon_{ij}(\omega; \mathcal{B}) = \epsilon_{ij}(\omega; 0) + iK(\omega)\epsilon_{ijk}\mathcal{B}_k$
- linear magneto-optic effect
- Faraday constant is

$$K(\omega) = \frac{Nq^3}{\epsilon_0 m^2} \; \frac{\omega}{(\Omega^2 - \mathrm{i}\omega\Gamma - \omega^2)^2} \label{eq:K}$$

- $K(\omega)$ is real in transparency window
- i. e. if ω is far away form Ω
- Faraday effect distinguishes between forward and backward propagation
- optical isolator

Remarks

Conduction in a magnetic field

Peter Hertel

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effec

Hall effect

Conduction in a magnetic field

• set the spring constant
$$m\Omega^2=0$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Conduction in a magnetic field

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effec
- Hall effect

- set the spring constant $m\Omega^2=0$
- study AC electric field $\tilde{\boldsymbol{\mathcal{E}}}$

Conduction in a magnetic field

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- set the spring constant $m\Omega^2=0$
- study AC electric field $\tilde{\boldsymbol{\mathcal{E}}}$
- and static magnetic induction ${oldsymbol{\mathcal{B}}}$

Conduction in a magnetic field

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- set the spring constant $m\Omega^2=0$
- study AC electric field $\tilde{\boldsymbol{\mathcal{E}}}$
- and static magnetic induction ${oldsymbol{\mathcal{B}}}$
- solve

$$m(-\omega^2 - i\Gamma\omega)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - i\omega\tilde{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}})$$

Conduction in a magnetic field

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- set the spring constant $m\Omega^2=0$
- study AC electric field $\tilde{\boldsymbol{\mathcal{E}}}$
- and static magnetic induction ${oldsymbol{\mathcal{B}}}$
- solve

$$m(-\omega^2 - \mathrm{i}\Gamma\omega)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - \mathrm{i}\omega\tilde{\boldsymbol{x}}\times\boldsymbol{\mathcal{B}})$$

• or

$$ilde{m{x}} = rac{q}{m} rac{1}{-\mathrm{i}\omega} rac{1}{\Gamma - \mathrm{i}\omega} \{ ilde{m{\mathcal{E}}} - \mathrm{i}\omega ilde{m{x}} imes m{\mathcal{B}} \}$$

Conduction in a magnetic field

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- set the spring constant $m\Omega^2=0$
- study AC electric field $\tilde{\boldsymbol{\mathcal{E}}}$
- and static magnetic induction ${oldsymbol{\mathcal{B}}}$
- solve

$$m(-\omega^2 - \mathrm{i}\Gamma\omega)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - \mathrm{i}\omega\tilde{\boldsymbol{x}}\times\boldsymbol{\mathcal{B}})$$

• or

$$\tilde{\boldsymbol{x}} = \frac{q}{m} \frac{1}{-\mathrm{i}\omega} \frac{1}{\Gamma - \mathrm{i}\omega} \{ \tilde{\boldsymbol{\mathcal{E}}} - \mathrm{i}\omega \tilde{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}} \}$$

• by iteration

$$\tilde{\boldsymbol{x}} = \dots \{ \tilde{\boldsymbol{\mathcal{E}}} + rac{q}{m} rac{1}{\Gamma - \mathrm{i}\omega} \tilde{\boldsymbol{\mathcal{E}}} imes \boldsymbol{\mathcal{B}} \}$$

Conduction in a magnetic field

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- set the spring constant $m\Omega^2=0$
- study AC electric field $\tilde{\boldsymbol{\mathcal{E}}}$
- and static magnetic induction ${oldsymbol{\mathcal{B}}}$
- solve

$$m(-\omega^2 - \mathrm{i}\Gamma\omega)\tilde{\boldsymbol{x}} = q(\tilde{\boldsymbol{\mathcal{E}}} - \mathrm{i}\omega\tilde{\boldsymbol{x}}\times\boldsymbol{\mathcal{B}})$$

• or

$$\tilde{\boldsymbol{x}} = \frac{q}{m} \frac{1}{-\mathrm{i}\omega} \frac{1}{\Gamma - \mathrm{i}\omega} \{ \tilde{\boldsymbol{\mathcal{E}}} - \mathrm{i}\omega \tilde{\boldsymbol{x}} \times \boldsymbol{\mathcal{B}} \}$$

• by iteration

$$ilde{oldsymbol{x}} = \dots \{ ilde{oldsymbol{\mathcal{E}}} + rac{q}{m} rac{1}{\Gamma - \mathrm{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}} \}$$

- Ohmic current $\propto \tilde{{\bm{\cal E}}}$ and Hall current $\propto \tilde{{\bm{\cal E}}} \times {\bm{\cal B}}$

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effec

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

Hall effect, schematilly

Peter Hertel

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

Peter Hertel

Overview

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effec

Hall effect

• Hall current usually forbidden by boundary conditions

Hall effect

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

• Hall current usually forbidden by boundary conditions

Hall effect

• Hall field

$$ilde{oldsymbol{\mathcal{E}}}_{\mathrm{H}} = -rac{q}{m}rac{1}{\Gamma-\mathrm{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}}$$

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- Hall current usually forbidden by boundary conditions
- Hall field

$$ilde{oldsymbol{\mathcal{E}}}_{\mathrm{H}} = -rac{q}{m}rac{1}{\Gamma-\mathrm{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}}$$

• replace
$$ilde{m{\mathcal{E}}}$$
 by $ilde{m{\mathcal{E}}}+ ilde{m{\mathcal{E}}}_{
m H}$

Peter Hertel

Overview

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

• Hall current usually forbidden by boundary conditions

Hall effect

• Hall field

$$ilde{oldsymbol{\mathcal{E}}}_{\mathrm{H}} = -rac{q}{m}rac{1}{\Gamma-\mathrm{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}}$$

• replace
$$ilde{m{\mathcal{E}}}$$
 by $ilde{m{\mathcal{E}}}+ ilde{m{\mathcal{E}}}_{
m H}$

• $\tilde{\boldsymbol{\mathcal{E}}}_{\mathrm{H}} imes \boldsymbol{\mathcal{B}}$ can be neglected

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect
- Hall effect

- Hall current usually forbidden by boundary conditions
- Hall field

$$ilde{oldsymbol{\mathcal{E}}}_{\mathrm{H}} = -rac{q}{m}rac{1}{\Gamma-\mathrm{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}}$$

• replace
$$ilde{m{\mathcal{E}}}$$
 by $ilde{m{\mathcal{E}}}+ ilde{m{\mathcal{E}}}_{
m H}$

- $\tilde{m{\mathcal{E}}}_{\mathrm{H}} imes m{\mathcal{B}}$ can be neglected
- current $ilde{m{J}}(\omega)=\sigma(\omega) ilde{m{\mathcal{E}}}(\omega)$ as usual

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- Hall current usually forbidden by boundary conditions
- Hall field

$$ilde{oldsymbol{\mathcal{E}}}_{ ext{H}} = -rac{q}{m}rac{1}{\Gamma- ext{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}}$$

- replace $ilde{m{\mathcal{E}}}$ by $ilde{m{\mathcal{E}}}+ ilde{m{\mathcal{E}}}_{
 m H}$
- $ilde{m{\mathcal{E}}}_{\mathrm{H}} imes m{\mathcal{B}}$ can be neglected
- current $ilde{m{J}}(\omega)=\sigma(\omega) ilde{m{\mathcal{E}}}(\omega)$ as usual
- additional Hall field $\tilde{\boldsymbol{\mathcal{E}}}_{\mathrm{H}}(\omega) = R(\omega)\tilde{\boldsymbol{J}}(\omega) \times \boldsymbol{\mathcal{B}}$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- Hall current usually forbidden by boundary conditions
- Hall field

$$ilde{oldsymbol{\mathcal{E}}}_{ ext{H}} = -rac{q}{m}rac{1}{\Gamma- ext{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}}$$

• replace
$$ilde{m{\mathcal{E}}}$$
 by $ilde{m{\mathcal{E}}}+ ilde{m{\mathcal{E}}}_{
m H}$

- $ilde{m{\mathcal{E}}}_{\mathrm{H}} imes m{\mathcal{B}}$ can be neglected
- current $ilde{m{J}}(\omega)=\sigma(\omega) ilde{m{\mathcal{E}}}(\omega)$ as usual
- additional Hall field $\tilde{\boldsymbol{\mathcal{E}}}_{\mathrm{H}}(\omega) = R(\omega)\tilde{\boldsymbol{J}}(\omega) \times \boldsymbol{\mathcal{B}}$
- Hall constant R = -1/Nq does not depend on ω

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- Hall current usually forbidden by boundary conditions
- Hall field

$$ilde{oldsymbol{\mathcal{E}}}_{ ext{H}} = -rac{q}{m}rac{1}{\Gamma- ext{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}}$$

• replace
$$ilde{m{\mathcal{E}}}$$
 by $ilde{m{\mathcal{E}}}+ ilde{m{\mathcal{E}}}_{
m H}$

- $ilde{m{\mathcal{E}}}_{\mathrm{H}} imes m{\mathcal{B}}$ can be neglected
- current $ilde{m{J}}(\omega)=\sigma(\omega) ilde{m{\mathcal{E}}}(\omega)$ as usual
- additional Hall field $\tilde{\boldsymbol{\mathcal{E}}}_{\mathrm{H}}(\omega) = R(\omega)\tilde{\boldsymbol{J}}(\omega) \times \boldsymbol{\mathcal{B}}$
- Hall constant R = -1/Nq does not depend on ω
- ... if there is a dominant charge carrier.

Peter Hertel

- Mode
- Dielectric medium
- Permittivity of metals
- Electrical conductors
- Faraday effect

- Hall current usually forbidden by boundary conditions
- Hall field

$$ilde{oldsymbol{\mathcal{E}}}_{ ext{H}} = -rac{q}{m}rac{1}{\Gamma- ext{i}\omega} ilde{oldsymbol{\mathcal{E}}} imes oldsymbol{\mathcal{B}}$$

• replace
$$ilde{m{\mathcal{E}}}$$
 by $ilde{m{\mathcal{E}}}+ ilde{m{\mathcal{E}}}_{
m H}$

- $ilde{m{\mathcal{E}}}_{\mathrm{H}} imes m{\mathcal{B}}$ can be neglected
- current $ilde{m{J}}(\omega)=\sigma(\omega) ilde{m{\mathcal{E}}}(\omega)$ as usual
- additional Hall field $\tilde{\boldsymbol{\mathcal{E}}}_{\mathrm{H}}(\omega) = R(\omega)\tilde{\boldsymbol{J}}(\omega) \times \boldsymbol{\mathcal{B}}$
- Hall constant R = -1/Nq does not depend on ω
- ... if there is a dominant charge carrier.
- R has different sign for electrons and holes

Peter Hertel

Overviev

Mode

Dielectric medium

Permittivity of metals

Electrical conductors

Faraday effect

Hall effect

◆□ →
◆□ →
□ →

Edwin Hall, US-American physicist, 1855-1938