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Model

• consider a typical electron

• denote by x = x(t) the deviation from its equilibrium
position

• external electric field strength E = E(t)

• m(ẍ + Γẋ + Ω2x) = qE

• electron mass m, charge q, friction coefficient mΓ, spring
constant mΩ2

• Fourier transform this

• m(−ω2 − iωΓ + Ω2)x̃ = qẼ

• solution is

x̃(ω) =
q

m

Ẽ(ω)

Ω2 − ω2 − iωΓ
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Polarization

• dipole moment of typical electron is p̃ = qx̃

• recall

x̃(ω) =
q

m

Ẽ(ω)

Ω2 − ω2 − iωΓ
• there are N typical electrons per unit volume

• polarization is P̃ = Nqx̃ = ε0χẼ

• susceptibility is

χ(ω) =
Nq2

ε0m

1

Ω2 − ω2 − iωΓ
• in particular

χ(0) =
Nq2

ε0mΩ2
> 0

• . . . as it should be
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• susceptibility is

χ(ω) =
Nq2

ε0m

1

Ω2 − ω2 − iωΓ
• in particular

χ(0) =
Nq2

ε0mΩ2
> 0

• . . . as it should be



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

Polarization

• dipole moment of typical electron is p̃ = qx̃

• recall

x̃(ω) =
q

m
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Discussion I

• decompose susceptibility χ(ω) = χ ′(ω) + iχ ′′(ω) into
refractive part χ ′ and absorptive part χ ′′

• Introduce R(ω) = χ(ω)/χ(0), s = ω/Ω and γ = Γ/Ω as
normalized quantities.

• refraction

R ′(s) =
1− s2

(1− s2)2 + γ2s2

• absorption

D ′′(s) =
γs

(1− s2)2 + γ2s2

• limiting cases: s = 0, s = 1, s→∞, small γ
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Refractive part (blue) and absorptive part (red) of the
susceptibility function χ(ω) scaled by the static value χ(0).
The abscissa is ω/Ω. Γ/Ω = 0.1
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Discussion II

• For small frequencies (as compared with Ω) the
susceptibility is practically real.

• This is the realm of classical optics

• ∂χ/∂ω is positive – normal dispersion

• In the vicinity of ω = Ω absorption is large. Negative
dispersion ∂χ/∂ω is accompanied by strong absorption.

• For very large frequencies again absorption is negligible,
and the susceptibility is negative with normal dispersion.
This applies to X rays.

• χ(∞) = 0 is required by first principles . . .
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Kramers-Kronig relation I

• χ(ω) must be the Fourier transform of a causal response
function G = G(τ)

• as defined in

P (t) = ε0

∫
dτG(τ)E(t− τ)

• check this for

G(τ) = a

∫
dω

2π

e
−iωτ

Ω2 − ω2 − iωΓ
• poles at

ω1,2 = − iΓ

2
± ω̄ where ω̄ = +

√
Ω2 − Γ2/4

• Indeed, G(τ) = 0 for τ < 0

• for τ > 0

G(τ) =
Nq2

ε0m

sin ω̄τ

ω̄
e
−Γτ/2
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Kramers-Kronig relation II

• causal response function: G(τ) = θ(τ)G(τ)

• apply the convolution theorem

χ(ω) =

∫
du

2π
χ(u)θ̃(ω − u)

• Fourier transform of Heaviside function is

θ̃(ω) = lim
0<η→0

1

η − iω

• dispersion , or Kramers-Kronig relations

χ ′(ω) = 2Pr

∫
du

π

uχ ′′(u)

u2 − ω2

χ ′′(ω) = 2Pr

∫
du

π

ωχ ′(u)

ω2 − u2
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Free quasi-electrons

• consider a typical conduction band electron

• it behaves as a free quasi-particle

• recall m(ẍ + Γẋ + Ω2x) = qE

• spring constant mΩ2 vanishes

• m is effective mass

• therefore

ε(ω) = 1−
ω2
p

ω2 + iωΓ
• plasma frequency ωp

ω2
p =

Nq2

ε0m
• correction for ω � ωp

ε(ω) = ε∞ −
ω2
p

ω2 + iωΓ
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Example: gold

• Drude model parameters for gold

• as determined by Johnson and Christy in 1972

• ε∞ = 9.5

• ~ωp = 8.95 eV

• ~Γ = 0.069 eV

• with these parameters the Drude model fits optical
measurements well for ~ω < 2.25 eV (green)

• The refractive part of the permittivity can be large and
negative while the absorptive part is small.

• This allows surface plasmon polaritons (SPP)
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Refractive (blue) and absorptive part (red) of the permittivity
function for gold. The abscissa is ~ω in eV.
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Electrical conductivity

• consider a typical charged particle

• recall m(ẍ + Γẋ + Ω2x) = qE

• electric current density J = Nqẋ

• Fourier transformed: J̃ = Nq(−iω)x̃

• recall

x̃(ω) =
q

m

Ẽ(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J̃(ω) = σ(ω)Ẽ(ω)

• conductivity is

σ(ω) =
Nq2

m

−iω

Ω2 − ω2 − iωΓ
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• recall m(ẍ + Γẋ + Ω2x) = qE

• electric current density J = Nqẋ
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Ẽ(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J̃(ω) = σ(ω)Ẽ(ω)
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• Fourier transformed: J̃ = Nq(−iω)x̃

• recall

x̃(ω) =
q

m

Ẽ(ω)

Ω2 − ω2 − iωΓ

• Ohm’s law

J̃(ω) = σ(ω)Ẽ(ω)

• conductivity is

σ(ω) =
Nq2

m

−iω

Ω2 − ω2 − iωΓ
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Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . It
cannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =
Nq2

m

1

Γ− iω
• or
σ(ω)

σ(0)
=

1

1− iω/Γ

• Note that the DC conductivity is always positive .



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . It
cannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =
Nq2

m

1

Γ− iω
• or
σ(ω)

σ(0)
=

1

1− iω/Γ

• Note that the DC conductivity is always positive .



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . It
cannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =
Nq2

m

1

Γ− iω
• or
σ(ω)

σ(0)
=

1

1− iω/Γ

• Note that the DC conductivity is always positive .



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . It
cannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =
Nq2

m

1

Γ− iω
• or
σ(ω)

σ(0)
=

1

1− iω/Γ

• Note that the DC conductivity is always positive .



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . It
cannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =
Nq2

m

1

Γ− iω

• or
σ(ω)

σ(0)
=

1

1− iω/Γ

• Note that the DC conductivity is always positive .



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . It
cannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =
Nq2

m

1

Γ− iω
• or
σ(ω)

σ(0)
=

1

1− iω/Γ

• Note that the DC conductivity is always positive .



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

Electrical conductors

• A material with σ(0) = 0 is an electrical insulator . It
cannot transport direct currents (DC).

• A material with σ(0) > 0 is an electrical conductor .

• Charged particles must be free, Ω = 0.

• which means

σ(ω) =
Nq2

m

1

Γ− iω
• or
σ(ω)

σ(0)
=

1

1− iω/Γ

• Note that the DC conductivity is always positive .



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

Georg Simon Ohm, German physicist, 1789-1854



The Drude
Model

Peter Hertel

Overview

Model

Dielectric
medium

Permittivity of
metals

Electrical
conductors

Faraday effect

Hall effect

External static magnetic field

• apply a quasi-static external induction B
• the typical electron obeys

m(ẍ + Γẋ + Ω2x) = q(E + ẋ×B)

• Fourier transform this

m(−ω2 − iωΓ + Ω2)x̃ = q(Ẽ − iωx̃×B)

• assume B = Bêz
• assume circularly polarized light

Ẽ = Ẽ±ê± where ê± = (êx + iêy)/
√

2

• try x̃ = x̃±ê±

• note ê± × êz = ∓iê±

• therefore

m(−ω2 − iωΓ + Ω2)x̃± = q(Ẽ± ∓ ωBx̃±)
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• Fourier transform this

m(−ω2 − iωΓ + Ω2)x̃ = q(Ẽ − iωx̃×B)

• assume B = Bêz
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• therefore

m(−ω2 − iωΓ + Ω2)x̃± = q(Ẽ± ∓ ωBx̃±)
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• assume B = Bêz
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Faraday effect

• m(−ω2 − iωΓ + Ω2)x̃± = q(Ẽ± ∓ ωBx̃±)

• therefore

x̃± =
qẼ±

m(Ω2 − iωΓ− ω2)± qωB
• recall P̃ = Nqx̃ = ε0χẼ

• effect of quasi-static induction B is

χ±(ω) =
Nq2

ε0m

1

Ω2 − iωΓ− ω2 ± (q/m)ωB
• left and right handed polarized light sees different

susceptibility

• Faraday effect
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Michael Faraday, English physicist, 1791-1867
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Remarks

• B is always small (in natural units)

• εij(ω;B) = εij(ω; 0) + iK(ω)εijkBk
• linear magneto-optic effect

• Faraday constant is

K(ω) =
Nq3

ε0m2

ω

(Ω2 − iωΓ− ω2)2

• K(ω) is real in transparency window

• i. e. if ω is far away form Ω

• Faraday effect distinguishes between forward and backward
propagation

• optical isolator
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Conduction in a magnetic field

• set the spring constant mΩ2 = 0

• study AC electric field Ẽ
• and static magnetic induction B
• solve

m(−ω2 − iΓω)x̃ = q(Ẽ − iωx̃×B)

• or

x̃ =
q

m

1

−iω

1

Γ− iω
{Ẽ − iωx̃×B}

• by iteration

x̃ = . . . {Ẽ +
q

m

1

Γ− iω
Ẽ ×B}

• Ohmic current ∝ Ẽ and Hall current ∝ Ẽ ×B
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• Hall current usually forbidden by boundary conditions

• Hall field

ẼH = − q

m

1

Γ− iω
Ẽ ×B

• replace Ẽ by Ẽ + ẼH

• ẼH ×B can be neglected

• current J̃(ω) = σ(ω)Ẽ(ω) as usual

• additional Hall field ẼH(ω) = R(ω)J̃(ω)×B
• Hall constant R = −1/Nq does not depend on ω

• . . . if there is a dominant charge carrier.

• R has different sign for electrons and holes
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Ẽ ×B

• replace Ẽ by Ẽ + ẼH
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Ẽ ×B

• replace Ẽ by Ẽ + ẼH
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Edwin Hall, US-American physicist, 1855-1938
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