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1 TE Modes

A planar waveguide is characterized by a permittivity profile which depends on
one coordinate only, say x. If ε = ε(x) is a smoothly varying function1 we speak
of a graded index waveguide.

A slab waveguide consists of optically homogeneous slabs. The lowest is the
substrate, on top of which there are one or many thin films, the topmost region is
the cover. A slab waveguide is characterized by a piecewise constant permittivity
profile.

We choose z as the direction of propagation. If the electric field is polarized
transversally to the waveguide normal and to the direction of propagation, we
we speak of a TE mode. Ex and Ez vanish while Ey has the form

Ey(t, x, y, z) = e−iωte iβzE(x) . (1)

The amplitude E = E(x) has to obey the mode equation

E ′′ + k20ε(x)E = β2E . (2)

k0 = ω/c0 denotes the vacuum wave number and c0 = 1/
√
ε0µ0 is the speed

of light in vacuum. The mode equation results by inserting (2) into the second
order Maxwell equation

curl curlE = k20 ε(x, y, z)E . (3)

The power transported by (1) is proportional to the waveguide width and to∫
dx |E(x)|2 . (4)

Therefore, only square integrable solutions of (2) describe guided modes.

1.1 Setting up a multilayer slab waveguide

The following piece of MATLAB code sets up a multilayer slab waveguide.

1 function wg=setup_waveguide(wid,ndx,NX,k0)

2 % usage: wg=setup_waveguide(wid,ndx,NX,k0);

3 NS=length(wid); % number of slabs

4 pos=cumsum(wid);

5 wg.x=linspace(0,pos(NS),NX);

6 wg.eps=ndx(1)^2*(wg.x<pos(1));

7 for s=2:NS

8 wg.eps=wg.eps+ndx(s)^2*((wg.x>=pos(s-1))&(wg.x<pos(s)));

9 end;

10 wg.eps(NX)=ndx(NS)^2;

11 wg.k0=k0;

1with a jump at the interface between the modified substrate and the cover
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wid and ndx are vectors of equal length, they describe the width and the re-
fractive index of consequent layers. NX is the number of equally spaced mesh
points, k0 the vacuum wavenumber of light by which the waveguide will be an-
alyzed. The program returns a record with fields x, eps, and k0. The former
describes the waveguide cross section (here: one-dimensional), the second the
permittivity profile, the third is k0.

Here we present an example of a structure made up of a substrate, three films
of increased refractive index and separated by gaps, the whole thing covered by
air. This program

1 function wg=wg_example()

2 % usage: wg=wg_example();

3 wid=[4.0,1.5,1.0,1.5,1.0,1.5,1.5,2.0];

4 ndx=[1.49,1.52,1.49,1.52,1.49,1.52,1.49,1.00];

5 lambda=0.6328;

6 k0=2*pi/lambda;

7 wg=setup_waveguide(wid,ndx,512,k0);

8 plot(wg.x,wg.eps,’-k’,’linewidth’,1.8);

9 print -depsc ’wg_example.eps’

10 ! epstopdf wg_example.eps

11 ! del wg_example.eps

generates the waveguide wg and represents it graphically by a PDF file. See
Figure 1.

1.2 Modes

Let us now calculate the guided modes of such a multilayer waveguide. We solve
the mode equation

1

k20
E ′′ + ε(x)E = ε̄E (5)

numerically. The effective permittivity εeff = ε̄ = (β/k0)2 stands for an eigen-
value of the linear operator

L =
1

k20

d2

dx2
+ ε(x) . (6)

If a function f = f(x) is represented by fj = f(xj) on a mesh of equally spaced
points xj , we work out its second derivative by

f ′′j = f ′′(xj) =
fj−1 − 2fj + fj+1

h2
, (7)

where h denotes the mesh width.
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Figure 1: Permittivity ε = ε(x) vs. cross section coordinate x. Three
wave-guiding films are mounted on a substrate and separated by two gaps
of substrate refractive index. The structure is covered by air.

For j = 1, 2, . . . N we set xj = jh and Ej = E(xj). Likewise, the permittivity is
approximated by εj = ε(xj). We assume E0 = 0 just as EN+1=0. Outside of our
computational window there is infinity where the field vanishes. For F = LE
or Fj =

∑
k LjkEk, we obtain

F1 =
E0 − 2E1 + E2

k20h
2

+ ε1E1 =
−2E1 + E2

k20h
2

+ ε1E1 , (8)

F2 =
E1 − 2E2 + E3

k20h
2

+ ε2E2 , (9)

and so forth, until

FN =
EN−1 − 2EN + EN+1

k20h
2

+ εNEN =
EN−1 − 2EN

k20h
2

+ εNEN . (10)

From these equations the structure of the matrix L = Ljk may be read off. Its
diagonal elements are

Ljj = − 2

k20h
2

+ εj , (11)
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while its side diagonals are

Lj−1,j = Lj,j+1 =
1

k20h
2
, (12)

or zero, if one of the indices is not in the range from 1 to N.

The following MATLAB program calculates all modes of a waveguide, guided
or not.

1 function [em,ev]=calculate_modes(wg)

2 % usage: [em,ev]=calculate_modes(wg);

3 NX=length(wg.x);

4 HX=wg.x(2)-wg.x(1);

5 main=-2*ones(NX,1)/HX^2/wg.k0^2+wg.eps’;

6 next=1*ones(NX-1,1)/HX^2/wg.k0^2;

7 L=diag(next,-1)+diag(main,0)+diag(next,1);

8 [em,ev]=eig(L);

9 ev=diag(ev);

em(:,r), a column vector, represents the eigenfunction labeled by r. ev(r) is
the corresponding eigenvalue, an effective permittivity.

Recall that a mode is guided (i.e. square integrable) if its effective permittivity
is larger than ε(−∞) as well as larger than ε(+∞). Its effective permittivity
will be smaller than the maximum permittivity value.

We single out the guided modes and plot them.

1 function plot_guided_modes(wg)

2 % usage: plot_guided_modes(wg);

3 [em,ee]=calculate_modes(wg);

4 NX=length(wg.x);

5 epssub=wg.eps(1);

6 epscov=wg.eps(NX);

7 epslow=max([epssub,epscov]);

8 gm=em(:,ee>epslow);

9 plot(wg.x,gm,wg.x,0.1*wg.eps,’-k’,’linewidth’,2);

Figure 2 shows the fields of the six guided modes.

1.3 Propagation by mode expansion

By introducing the scalar product

(g, f) =

∫
dx g∗(x) f(x) (13)

we easily may show that the mode operator (6) is self-adjoint, or hermitian.
Therefore, its eigenfunctions form a complete set of normalized and mutually
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Figure 2: The waveguide structure as described above carries six guided
modes. Superimposed is the waveguide profile (scaled differently). Note
that the guided modes barely penetrate into the cover. However, there is
some overlap in the gap regions.

orthogonal functions. Any square integrable function f = f(x) may be decom-
posed into mode fields er = er(x), i. e.

f(x) =
∑
r

crer(x) , (14)

and the expansion coefficients cr are given by

cr = (er, f) =

∫
dx e∗r(x) f(x) . (15)

If we want to know how an electric field E = E(x, z) depends on the propagation
coordinate z we just have to work out the expansion coefficients

cr =

∫
dx e∗r(x)E(x, 0) (16)

and write

E(x, z) =
∑
r

crer(x)e iβrz , (17)

as follows from (1).
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However, there is a problem. βr = ±k0
√
ε̄r has two solutions, which one should

be chosen? Put otherwise, should we really use all modes for expanding the
initial field into eigenfunctions? We have just touched a deep problem. The
differential equation for propagating a field along z is of second order, and
therefore, two initial conditions should be specified, not just one, namely f(x) =
E(x, 0). We come back to this in the next section.

The following numerical study provides a convincing answer. We have expanded
a Gaussian field profile into all modes, into modes with positive effective per-
mittivity and into guided modes.

The field has been generated by

1 function f=setup_incident_beam(wg)

2 % usage f=setup_incident_beam(wg);

3 pos=6.0;

4 wid=1.0;

5 f=exp(-((wg.x-pos)/wid).^2)’;

Note that this program returns a column vector. And here is the code for
expanding the field into modes.

1 function overlap=expand_field(wg,f)

2 % usage: overlap=expand_field(wg,f);

3 [em,ee]=calculate_modes(wg);

4 c=em’*f;

5 fa=em*c;

6 pm=em(:,ee>0);

7 c=pm’*f;

8 fp=pm*c;

9 NX=length(wg.eps);

10 epssub=wg.eps(1);

11 epscov=wg.eps(NX);

12 epslow=max([epssub,epscov]);

13 gm=em(:,ee>epslow);

14 c=gm’*f;

15 fg=gm*c;

16 overlap=abs(fg’*f)^2/(fg’*fg)/(f’*f);

17 x=wg.x;

18 plot(x,f,x,fa,x,fp,x,fg,x,wg.eps,’-k’,’linewidth’,2);

Line 1 says that the waveguide wg is investigated. An incident field f is analyzed.
It will be expanded by using all modes (fa), or by using modes with positive
permittivity only (fp) or by using guided modes only (fg). Line 2 provides the
eigenvectors (em) and its corresponding effective epsilons (ee). The next two
lines deliver the coefficients c of the decomposition and its reconstruction fa,
using all eigenvectors, i. e. em.

The next section uses pm, the set of all eigenvectors with positive permittivity.
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The following section singles out guided modes as described before and delivers
a decomposition of the original field into the fields of guided modes.

The final part of this program produces a PDF file which visualizes all this. See
Figure 3.
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Figure 3: A Gaussian beam field is decomposed into the modes of a
waveguide. The waveguide structure is superimposed in another scale.
The original field and its representation by all modes are numerically
identical. Using modes with positive effective permeability is a very good
approximation, it cannot be distinguished from the original in this pic-
ture. Using guided modes only (the curve with dips at the barriers)
evidently is not a good idea.

The conclusion is: Incident smooth fields can be approximated very well, but
not identically, by a a sum of modes with positive effective permittivities. In
our case the overlap R between the incident beam f and its representation g by
guided modes, as defined by |(g, f)|2 = R (g, g) (f, f) turned out to be 0.7482.
Remember this number! We come back to it. Incidentally, the Cauchy-Schwartz
inequality says 0 ≤ R ≤ 1.

The following piece of code realizes the propagation and generates a contour
plot. See Figure 4.

1 function propagate_pmodes(wg,f,dist,HZ)

2 % usage: propagate_pmodes(wg,f,dist,HZ);

3 [em,ee]=calculate_modes(wg);

4 positive=ee>0;
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5 pm=em(:,positive);

6 pe=ee(positive);

7 NC=length(pe);

8 beta=wg.k0*sqrt(pe);

9 c=pm’*f;

10 NZ=dist/HZ;

11 z=linspace(0,dist,NZ);

12 cz=zeros(NC,NZ);

13 for r=1:NC

14 cz(r,:)=c(r)*exp(i*beta(r)*z);

15 end;

16 fz=pm*cz;

17 contour(z,wg.x,abs(fz).^2,20);
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Figure 4: The field of Figure 3 was decomposed into modes with positive
effective epsilon, each mode propagating along z with its appropriate
propagation constant. We plot the contour lines of the power. Bottom
to top: waveguide cross section x, microns. Left to right: propagation
direction z, microns.

1.4 Difficulties with the mode propagation method

We have just described a seemingly simple method how to calculate the propaga-
tion of an incident beam in a waveguide structure. We decompose the incident
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beam into a superposition of a reasonably chosen set of modes and let each
mode propagate with its appropriate propagation constant. However, there is a
certain amount of arbitrariness.

Why choose only positive real propagation constants? Clearly, because we con-
sider the incident beam to be an incident beam. It comes from left and should
only propagate towards right. Therefore, the propagation constants βr of the
modes involved should be real and positive. They are real only if we restrict
ourselves to modes with positive permittivity. We will look for better arguments
in the following section.

There is another obvious shortcoming of the mode propagation method.

With (17) and (es, er) = δsr we easily work out∫
dx |E(x, z)|2 =

∑
r

|cr|2 . (18)

Power is conserved. By our approximation scheme, this applies to the power
within the computational window. When calculating modes, we silently as-
sumed that they vanish outside the computational window. Hence, waves are
reflected at the windows of the computational window, and therefore, although
it looks quite nice, Figure 4 may be an artifact.

2 Fresnel Approximation

We will formulate the Fresnel, or par-axial approximation in order to describe
a situation where a field is nearly a plane wave. The finite difference Crank-
Nicholson propagation scheme is introduced and realized. Reflexions at the
boundaries of the computation window result in unphysical interference effects.
This problem is solved by introducing transparent boundary conditions which
are discussed in the next section.

2.1 Fresnel equation

A TE polarized wave field Ex = Ez = 0 and Ey = E(x, z) obeys the Helmholtz
equation

(∂2x + ∂2z )E + k20ε(x, z)E = 0 . (19)

This is a consequence of the second order Maxwell equation (3).

If the permittivity does not depend on z, a field of the form

E(x, z) = E(x)e iβz (20)

is a solution of (19) provided

E ′′ + k20ε(x)E = β2E (21)
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is fulfilled, with a square integrable function E = E(x). (21) is the mode
equation which we have discussed in the previous section.

We are looking for solutions of the Helmholtz equation which behave almost like
modes:

E(x, z) = A(x, z)e i k0n0z , (22)

where the amplitude A depends but weekly on z. n0 is a reference index which
is close to the refractive index of the wave-guiding structure. We insert this into
(19) and neglect ∂2zA as compared with k0∂zA. The result is

−i ∂zA = PA where P = P (z) =
∂2x + k20{ ε(x)− n20 }

2k0n0
, (23)

the Fresnel equation. P is the propagation operator2. Incidentally, the condition
for A not to depend on z is the mode equation, with β = k0n0.

2.2 Crank-Nicholson scheme

Let A = A(x, z) be represented by Ar
j = A(jhx, rhz) on an equally spaced

x, z mesh. r and j are integers in a finite range. We want to propagate the
amplitudes from r to r + 1. The propagation operator is represented by a
matrix Pjk.

There are three possibilities.

2.2.1 Explicitly forward

We may write

Ar+1
j = Ar

j + ihz
∑
k

PjkA
r
k . (24)

The propagation matrix has to be evaluated at z = rhz. A detailed study of
this propagation scheme reveals that it is never stable. See [1] for a thorough
discussion.

2.2.2 Explicitly backward, or implicitly forward

We write

Ar
j = Ar+1

j − ihz
∑
k

PjkA
r+1
k . (25)

The propagation matrix has to be evaluated at z = (r + 1)hz. (25) amounts to
solving a system of linear equations. In Ar = (I− ihzP )Ar+1 the left hand side
is known, but the vector Ar+1 is to be worked out. This scheme is much more
complicated, but always stable.

2P might depend on z, but only very slowly. There might be nonlinear effects such the the
refractive index changes slightly with the light intensity.
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2.2.3 Crank-Nicholson scheme

It turns out that a symmetric combination of explicitly forward and explicitly
backward is always stable as well, but one order in hz more accurate. The
amplitude A is propagated explicitly forward from z = rhz to z = (r + 1/2)hz.
It is propagated backward from z = (r + 1)hz to z = (r + 1/2)hz. Both fields
at z = (r + 1/2)hz should coincide, which amounts to

Ar
j +

ihz
2

∑
k

PjkA
r
k = Ar+1

j − ihz
2

∑
k

PjkA
r+1
k . (26)

Again we must solve a system of linear equations which may formally be written
as

Ar+1 = (I − ihzP/2)−1(I + ihzP/2)Ar . (27)

2.3 Unitarity

Assume for a moment that the propagation operator P does really not depend
on z. Then the Fresnel equation (23) is formally solved by

A(z + h) = e ihPA(z) . (28)

Now, P is a self-adjoint operator, hence e ihP is unitary.

Explicitly forward amounts to the approximation

e ihP ≈ I + ihP . (29)

The right hand side is not unitary.

Explicitly backward, or implicitly forward, means the approximation

e−ihP ≈ I − ihP . (30)

The right hand side is not unitary either.

The Crank-Nicholson scheme says

e ihP ≈ I + ihP/2

I − ihP/2
. (31)

The right hand side of this approximation is obviously unitary and moreover
correct up to order h2.

2.4 Propagation in a homogeneous medium

Let us now try out the Crank-Nicholson scheme by propagating a Gaussian
beam in a homogeneous medium. We choose our standard example which shall
consist of the substrate only. The following code does it.
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1 function cn_free_rbc(wg,f,dist,HZ)

2 %usage: cn_free_rbc(wg,f,dist,HZ)

3 NZ=dist/HZ;

4 z=linspace(0,dist,NZ);

5 n0=sqrt(wg.eps(1));

6 NX=length(wg.x);

7 HX=wg.x(2)-wg.x(1);

8 main=-2*ones(NX,1)/HX^2/2/wg.k0/n0;

9 next=ones(NX-1,1)/HX^2/2/wg.k0/n0;

10 P=diag(next,-1)+diag(main,0)+diag(next,1);

11 F=eye(NX)+i*HZ*P/2;

12 B=eye(NX)-i*HZ*P/2;

13 fz(:,1)=f;

14 for r=2:NZ

15 f=B\(F*f);

16 fz(:,r)=f;

17 end;

18 contour(z,wg.x,abs(fz).^2,32);

The matrix F propagates forward by HZ/2 while B propagates backward. Line 15
solves the system of linear equations. See Figure 5 for the result.
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Figure 5: Propagating a Gaussian beam in a homogeneous medium by
the Crank-Nicholson scheme.
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Obviously, the boundaries of the computational window reflect the wave which
produces unphysical interferences.

We now propagate the same beam in our example multilayer slab waveguide.
Only one line (except for the figure production) has to be changed:

8 main=(-2*ones(NX,1)/HX^2+wg.k0^2*(wg.eps’-n0^2))/2/wg.k0/n0;

Figure 6 shows the result.
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Figure 6: A Gaussian beam propagates in the multilayer slab waveguide
as shown in Figure 1

Figure 6 very strongly resembles Figure 4, therefore both are wrong. When
calculating modes or when setting up the Fresnel propagation operator P we
have silently assumed that the field vanishes outside the computational window.
This amounts to reflecting boundary conditions. What we need is a transparent
computational window.

3 Transparent Boundary Conditions

We shall describe Headley’s procedure how to cope with the problem of reflexions
at the boundaries of the computational window. This method is tested for
propagation in free space and in a multilayer waveguide structure.
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3.1 Field behavior at the boundary

It is assumed that the computational window is large enough. Therefore, the

field there should be an outgoing wave proprtional to e i kx, with a certain

wavenumber. From x to x + hx there should be a phase shift by e i khx . This
means

e i khx =
Ar

j+1

Ar
j

(32)

close to the boundary.

Hadley’s idea [2] was to work out k as

k = − i

hx
{log(Ar

N )− log(Ar
N−1)} . (33)

Here N is the index of the uppermost point in the computational window.

Now, if the real part of k is positive, we have indeed an outbound wave. If,
however, the real part of k turns out to be negative, we have an inbound wave.
In this case we set the real part of k to zero thereby stopping reflexion. After
this we may work out

Ar
N+1 = e i khxAr

N . (34)

And this is precisely what we need for working out the second derive at the
boundary:

(A ′′)rN =
(e i khx − 2)Ar

N +Ar
N−1

h2x
. (35)

Similar considerations apply to the lower boundary.

3.2 Propagation in a homogeneous medium

Let us test Hadley’s scheme of transparent boundary conditions by propagating
a Gaussian beam in a homogeneous medium. We chose the example waveguide
wg with wg.eps replaced by the substrate value.

1 function cn_free_tbc(wg,f,dist,HZ)

2 % usage: cn_free_tbc(wg,f,dist,HZ)

The first line says that we want to propagate, by the Crank-Nicholson scheme,
in free space with transparent boundary conditions, in a waveguide wg, a field
f, up to a certain distance dist, in steps of HZ. wg is not really required, but
we need its x axis information, its substrate refractive index as well as the light
wave number k0. The second line is a comment. It appears if you type

>> help cn_free_tbc

in the MATLAB command window.
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Figure 7: A Gaussian beam is inserted into a homogeneous medium. Its
propagation was simulated by the Crank-Nicholson scheme for solving the
Fresnel equation with Hadley’s transparent boundary conditions.

3 TINY=1e-5;

4 NZ=dist/HZ;

5 z=linspace(0,dist,NZ);

6 n0=sqrt(wg.eps(1));

7 NX=length(wg.x);

8 HX=wg.x(2)-wg.x(1);

These lines define what is small, they define the z-axis, set the reference index
n0 and provide data for the computational window.

Next we set up the forward and backward propagation matrices before correc-
tions for transparent boundary conditions.

9 main=-2*ones(NX,1)/HX^2/(2*wg.k0*n0);

10 next=ones(NX-1,1)/HX^2/(2*wg.k0*n0);

11 P=diag(next,-1)+diag(main,0)+diag(next,1);

12 F=eye(NX)+i*HZ*P/2;

13 B=eye(NX)-i*HZ*P/2;

Now we iterate:

14 fz(:,1)=f;
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15 for r=2:NZ

16 FF=F;

17 BB=B;

We copy the standard forward and backward propagation matrices. They are
now modified at the lower boundary

18 if abs(f(1))>TINY

19 k=i/HX*log(f(2)/f(1));

20 if real(k)<0

21 k=i*imag(k);

22 end;

23 tbc=exp(i*k*HX)/HX^2*i*HZ/2/(2*wg.k0*n0);

24 FF(1,1)=FF(1,1)+tbc;

25 BB(1,1)=BB(1,1)-tbc;

26 end;

and at the upper boundary

27 if abs(f(NX))>TINY

28 k=-i/HX*log(f(NX)/f(NX-1));

29 if real(k)<0

30 k=i*imag(k);

31 end;

32 tbc=exp(i*k*HX)/HX^2*i*HZ/2/(2*wg.k0*n0);

33 FF(NX,NX)=FF(NX,NX)+tbc;

34 BB(NX,NX)=BB(NX,NX)-tbc;

35 end;

We now solve BB*ff=FF*f and set f=ff.

36 f=BB\(FF*f);

37 fz(:,r)=f;

38 end;

The next line produces Figure 7:

39 contour(z,wg.x,abs(fz).^2,32);

3.3 Beam propagation in a multilayer slab waveguide

We have discussed the propagation of a beam in a waveguide structure before.
We expanded the incident beam into modes and propagated each mode with
its appropriate propagation constant. We now know that the result cannot bee
correct since it suffers from reflecting boundary conditions.

We have to modify just one line of the above program. Line 9 must be changed
into
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9 main=(-2*ones(NX,1)/HX^2+wg.k0^2*(wg.eps’-n0^2))/(2*wg.k0*n0);

The modifications to the propagation matrices are not affected by this change.
Figure 8 shows the result.
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Figure 8: An incident Gaussian beam propagates along a multilayer slab
waveguide. We have plotted the power P (x, z) where x runs from bottom
to top and z, the propagation axis, from left to right.

We conclude this tutorial article by a long distance propagation.

In Figure 9 one clearly recognizes coupling between the waveguiding layers.

Figure 10 depicts the distribution of power in the various layers.

It is evident that power has left the computational window which means that
boundaries are transparent indeed.

3.4 Mode propagation reconsidered

The power in the computational window, after propagation by 1200 microns,
is 0.7493 of the original power. Recall that the overlap of the incident beam with
its representation by guided modes only was R = 0.7482. This is no coincidence.
We interpret this as follows.

Everything in the incident field which is not a superposition of guided modes is
radiated off. Although 1200 microns is large as compared with 14 microns for
the computational window, still not all misfitting parts of the incident beam,
but nearly all, have left the computational window. But as you may guess by
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Figure 9: Propagation in a multilayer waveguide over a long distance.
Distances in microns.

inspecting Figure 10, the power within the computational window will converge
towards a limit, and this will be the initial overlap R, within computational
accuracy.

Therefore, for understanding the significance of Figure 9, we compare it with a
propagation study which relies on the decomposition of the incident beam into
guided modes only. We have rejected this earlier because it could not describe
the initial few microns and because it could not radiate off. But it should reflect
the stationary state.

Here is the code:

1 function propagate_gmodes(wg,f,dist,HZ)

2 % usage: propagate_gmodes(wg,f,dist,HZ);

3 [em,ee]=calculate_modes(wg);

4 NX=length(wg.eps);

5 epssub=wg.eps(1);

6 epscov=wg.eps(NX);

7 epslow=max([epssub,epscov]);

8 guided=ee>epslow;

9 gm=em(:,guided);

10 ge=ee(guided);

11 NC=length(ge);

12 beta=wg.k0*sqrt(ge);
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Figure 10: From bottom to top: power in the lowest guiding layer, added
to it the power in the next guiding layer, than the power in all three guid-
ing layers. The upper curve is the total power within the computational
window. The difference between the two topmost curves is the power in
the gaps.

13 c=gm’*f;

14 NZ=dist/HZ;

15 z=linspace(0,dist,NZ);

16 cz=zeros(NC,NZ);

17 for r=1:NC

18 cz(r,:)=c(r)*exp(i*beta(r)*z);

19 end;

20 fz=gm*cz;

21 contour(z,wg.x,abs(fz).^2,20);

You should compare this with Figure 9. Close to beam injection, at z = 0, the
intensity patterns differ substantially. However, after a long distance of prop-
agation, the Crank-Nicholson propagation scheme with Hadley’s transparent
boundary conditions cannot be discerned from a simple-minded mode propaga-
tion scheme. The incident beam field is decomposed into guided modes, and
each guided mode propagates with its own propagation constant.
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Figure 11: An incident Gaussian beam is decomposed into guided modes
each of which propagates with its own propagation constant. We depict
the absolute square of the field (its intensity) within the computational
window. Bottom to top: computational window. Left to right: propaga-
tion distance.

4 Summary

The guided modes of multilayer slab waveguides can be very easily worked out
numerically. In fact, one calculates all modes and selects those with effective
permittivity larger than the maximal permittivity at infinity.

A crude approach to the propagation problem is to expand the incident beam
field into all modes (we label them by r), each mode field er = er(x) propagating
with its own propagation constant βr. However, the mode equation provides
er(x) and β2

r . Which of the two roots should be chosen?

Since the beam to be propagated is incident, only positive βr are welcome, and
therefore we restrict our attention on modes with positive β2, which we call
positive modes. An initial Gaussian beam, for example, can be well expanded
into positive modes, and the propagation as a sum of such modes seems very
satisfactory, until the field hits the boundaries of the computational window.
It is evident that it is reflected there which leads to unphysical interference
phenomena.

We next studied the Fresnel approximation which formulates the expectation
that an incident wave, from left to right, propagates almost like a plain wave
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with a phase e i k0n0z , where its amplitude A = A(x, z) depends but weekly
on z. The Fresnel equation is of first order with respect to the propagation
variable z. Guided modes are solutions of the Fresnel equation if we insist on
∂zA(x, z) = 0, with n0 = β/k0.

We discuss three propagation schemes. The simplest, explicitly forward, is not
stable. Implicitly forward, or explicitly backward is stable, but numerically
expensive because for each step a system of linear equations has to be solved.
The preferred method is a combination of both, the Crank-Nicholson scheme.
It is stable, and one order more accurate in the propagation step width.

However, also the Crank-Nicholson scheme propagates with a unitary propa-
gation operator such that the power within the computational window is con-
served.

Therefore we supplement the Crank-Nicholson scheme of propagation by trans-
parent boundary conditions. At the boundary, we assume the field a plain wave
with a definite wave number k. If it is an out-bound wave, nothing is done. If it
is an inbound wave, we modify k such that it is neither outbound nor inbound.
Thereby the field just outside the computational window may be predicted, so
that we can safely calculate the second derivative at the boundary. We no longer
silently assume that the field vanishes outside the computation window.

We contrast the new propagation scheme – Crank-Nicholson with transparent
boundary conditions – with its counterpart for reflecting boundary conditions.
The propagation of a Gaussian beam in a homogeneous medium as well as in a
multilayer waveguide structure are now what we expect.

A long distance propagation by the Crank-Nicholson scheme with transparent
boundary conditions is presented. Asymptotically it coincides with a propaga-
tion scheme by which only the guided modes within the incident beam propagate
with their appropriate propagation constant. The former radiates off all non-
mode-contributions when propagating, the latter does this immediately.
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