Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Crystal optics

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

October/November 2011

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Overview

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Overview

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Crystal optics investigates the propagation of plane waves in a homogeneous medium

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Overview

- Crystal optics investigates the propagation of plane waves in a homogeneous medium
- The susceptibility tensor is real and symmetric

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Overview

- Crystal optics investigates the propagation of plane waves in a homogeneous medium
- The susceptibility tensor is real and symmetric
- three eigenvalues equal: isotropic medium

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Overview

- Crystal optics investigates the propagation of plane waves in a homogeneous medium
- The susceptibility tensor is real and symmetric
- three eigenvalues equal: isotropic medium
- only two are equal: uniaxial medium

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Overview

- Crystal optics investigates the propagation of plane waves in a homogeneous medium
- The susceptibility tensor is real and symmetric
- three eigenvalues equal: isotropic medium
- only two are equal: uniaxial medium
- all three are different: biaxial medium

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Overview

- Crystal optics investigates the propagation of plane waves in a homogeneous medium
- The susceptibility tensor is real and symmetric
- three eigenvalues equal: isotropic medium
- only two are equal: uniaxial medium
- all three are different: biaxial medium
- Birefringence

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Overview

- Crystal optics investigates the propagation of plane waves in a homogeneous medium
- The susceptibility tensor is real and symmetric
- three eigenvalues equal: isotropic medium
- only two are equal: uniaxial medium
- all three are different: biaxial medium
- Birefringence
- Absorption

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Overview

- Crystal optics investigates the propagation of plane waves in a homogeneous medium
- The susceptibility tensor is real and symmetric
- three eigenvalues equal: isotropic medium
- only two are equal: uniaxial medium
- all three are different: biaxial medium
- Birefringence
- Absorption
- Drude model

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Linear medium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Linear medium

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• for a sufficiently weak light wave, the polarization is linear in the electric field strength

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Linear medium

- for a sufficiently weak light wave, the polarization is linear in the electric field strength
- however retarded, but local

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, G_{ij}(\tau) \, E_j(t - \tau, \boldsymbol{x})$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Linear medium

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- for a sufficiently weak light wave, the polarization is linear in the electric field strength
- however retarded, but local

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, G_{ij}(\tau) \, E_j(t - \tau, \boldsymbol{x}) \, d\tau$$

• Einstein's summation convention: sum over j from 1 to 3

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

Linear medium

- for a sufficiently weak light wave, the polarization is linear in the electric field strength
- however retarded, but local

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, G_{ij}(\tau) \, E_j(t - \tau, \boldsymbol{x})$$

- Einstein's summation convention: sum over j from 1 to 3
- Fourier transform

$$F(t) = \int \frac{\mathrm{d}\omega}{2\pi} f(\omega) \, e^{-\mathrm{i}\omega t}$$

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

for a sufficiently weak light wave, the polarization is linear in the electric field strength

Linear medium

• however retarded, but local

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, G_{ij}(\tau) \, E_j(t - \tau, \boldsymbol{x})$$

- Einstein's summation convention: sum over j from 1 to 3
- Fourier transform

$$F(t) = \int \frac{\mathrm{d}\omega}{2\pi} f(\omega) \, e^{-\mathrm{i}\omega t}$$

- Fourier transform $\tilde{F}(\omega)$ of F(t) here denoted by $f(\omega)$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

• for a sufficiently weak light wave, the polarization is linear in the electric field strength

however retarded, but local

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, G_{ij}(\tau) \, E_j(t - \tau, \boldsymbol{x}) \, d\tau$$

- Einstein's summation convention: sum over j from 1 to 3
- Fourier transform

$$F(t) = \int \frac{\mathrm{d}\omega}{2\pi} f(\omega) \, e^{-\mathrm{i}\omega t}$$

- Fourier transform $\tilde{F}(\omega)$ of F(t) here denoted by $f(\omega)$
- the Fourier transform of the dispacement is

 $d_i(\omega, \boldsymbol{x}) = \epsilon_0 \, \epsilon_{ij}(\omega) \, e_j(\omega, \boldsymbol{x})$

Linear medium

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

• for a sufficiently weak light wave, the polarization is linear in the electric field strength

• however retarded, but local

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, G_{ij}(\tau) \, E_j(t - \tau, \boldsymbol{x}) \, d\tau$$

- Einstein's summation convention: sum over j from 1 to 3
- Fourier transform

$$F(t) = \int \frac{\mathrm{d}\omega}{2\pi} f(\omega) \, e^{-\mathrm{i}\omega t}$$

- Fourier transform $\tilde{F}(\omega)$ of F(t) here denoted by $f(\omega)$
- the Fourier transform of the dispacement is

$$d_i(\omega, \boldsymbol{x}) = \epsilon_0 \, \epsilon_{ij}(\omega) \, e_j(\omega, \boldsymbol{x})$$

• $\epsilon_{ij}(\omega) = \delta_{ij} + \chi_{ij}(\omega)$ where $\chi_{ij} = \tilde{G}_{ij}$

Linear medium

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Refraction and absorption

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Refraction and absorption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• decompose

$$\epsilon_{ij} = \epsilon'_{ij} + \mathrm{i}\,\epsilon''_{ij}$$

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

Refraction and absorption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• decompose

$$\epsilon_{ij} = \epsilon'_{ij} + i \, \epsilon''_{ij}$$

$$\epsilon_{ij}' = \frac{\epsilon_{ij} + \epsilon_{ji}^*}{2}$$

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Refraction and absorption

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• decompose

$$\epsilon_{ij} = \epsilon'_{ij} + \mathrm{i}\,\epsilon''_{ij}$$

refractive part

$$\epsilon_{ij}' = \frac{\epsilon_{ij} + \epsilon_{ji}^*}{2}$$

$$\epsilon_{ij}'' = \frac{\epsilon_{ij} - \epsilon_{ji}}{2i}$$

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Refraction and absorption

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• decompose

$$\epsilon_{ij} = \epsilon'_{ij} + i \, \epsilon''_{ij}$$

refractive part

$$\epsilon_{ij}' = \frac{\epsilon_{ij} + \epsilon_{ji}^*}{2}$$

$$\epsilon_{ij}'' = \frac{\epsilon_{ij} - \epsilon_{ji}^*}{2\mathrm{i}}$$

• both are Hermitian: $A_{ij} = A_{ji}^*$

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Refraction and absorption

• decompose

$$\epsilon_{ij} = \epsilon'_{ij} + \mathrm{i}\,\epsilon''_{ij}$$

refractive part

$$\epsilon_{ij}' = \frac{\epsilon_{ij} + \epsilon_{ji}^*}{2}$$

$$\epsilon_{ij}'' = \frac{\epsilon_{ij} - \epsilon_{ji}^*}{2\mathrm{i}}$$

- both are Hermitian: $A_{ij} = A_{ji}^*$
- we shall see later while absorptive part causes absorption

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

Refraction and absorption

• decompose

$$\epsilon_{ij} = \epsilon'_{ij} + i \, \epsilon''_{ij}$$

refractive part

$$\epsilon_{ij}' = \frac{\epsilon_{ij} + \epsilon_{ji}^*}{2}$$

• absorptive part

$$\epsilon_{ij}'' = \frac{\epsilon_{ij} - \epsilon_{ji}^*}{2\mathrm{i}}$$

- both are Hermitian: $A_{ij} = A_{ji}^*$
- we shall see later while absorptive part causes absorption
- i. e. the conversion of field energy into internal energy

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Transparent medium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Transparent medium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• assume $\epsilon_{ij}^{\prime\prime}(\omega)\approx 0$ for the frequencies under discussion

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Transparent medium

• assume $\epsilon_{ij}''(\omega)\approx 0$ for the frequencies under discussion • then $\epsilon_{ij}=\epsilon_{ij}'$ is hermitian

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

Transparent medium

- assume $\epsilon_{ij}^{\prime\prime}(\omega)\approx 0$ for the frequencies under discussion
- then $\epsilon_{ij} = \epsilon'_{ij}$ is hermitian
- recall Onsager's relations

$$\epsilon_{ij}(\omega; \boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}) = \epsilon_{ji}(\omega; \boldsymbol{\mathcal{E}}, -\boldsymbol{\mathcal{B}})$$

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

Transparent medium

- assume $\epsilon_{ij}^{\prime\prime}(\omega)\approx 0$ for the frequencies under discussion
- then $\epsilon_{ij} = \epsilon'_{ij}$ is hermitian
- recall Onsager's relations

$$\epsilon_{ij}(\omega; \boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}) = \epsilon_{ji}(\omega; \boldsymbol{\mathcal{E}}, -\boldsymbol{\mathcal{B}})$$

• where $\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}$ are static external fields

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

Transparent medium

- assume $\epsilon_{ij}^{\prime\prime}(\omega)\approx 0$ for the frequencies under discussion
- then $\epsilon_{ij} = \epsilon'_{ij}$ is hermitian
- recall Onsager's relations

$$\epsilon_{ij}(\omega; \boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}) = \epsilon_{ji}(\omega; \boldsymbol{\mathcal{E}}, -\boldsymbol{\mathcal{B}})$$

- where $\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}$ are static external fields
- without external induction field

$$\epsilon_{ji} = \epsilon_{ij} = \epsilon_{ij}^*$$

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

Transparent medium

- assume $\epsilon_{ij}^{\prime\prime}(\omega)\approx 0$ for the frequencies under discussion
- then $\epsilon_{ij} = \epsilon'_{ij}$ is hermitian
- recall Onsager's relations

$$\epsilon_{ij}(\omega; \boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}) = \epsilon_{ji}(\omega; \boldsymbol{\mathcal{E}}, -\boldsymbol{\mathcal{B}})$$

- where $\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}$ are static external fields
- without external induction field

 $\epsilon_{ji} = \epsilon_{ij} = \epsilon_{ij}^*$

• no absorption, no external induction: ϵ_{ij} is a real symmetric matrix

Peter Hertel

Overview

Permittivity tensor

- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

Transparent medium

- assume $\epsilon_{ij}^{\prime\prime}(\omega)\approx 0$ for the frequencies under discussion
- then $\epsilon_{ij} = \epsilon'_{ij}$ is hermitian
- recall Onsager's relations

$$\epsilon_{ij}(\omega; \boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}) = \epsilon_{ji}(\omega; \boldsymbol{\mathcal{E}}, -\boldsymbol{\mathcal{B}})$$

- where $\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{B}}$ are static external fields
- without external induction field

 $\epsilon_{ji} = \epsilon_{ij} = \epsilon_{ij}^*$

- no absorption, no external induction: ϵ_{ij} is a real symmetric matrix
- ϵ_{ij} can be diagonalized by an orthogonal matrix

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Main axes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringenc

Absorption

Drude model

there is a Cartesian coordinate system such that

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^1 & 0 & 0\\ 0 & \epsilon^2 & 0\\ 0 & 0 & \epsilon^3 \end{array}\right)$$

Main axes

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Drude model

there is a Cartesian coordinate system such that

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^1 & 0 & 0 \\ 0 & \epsilon^2 & 0 \\ 0 & 0 & \epsilon^3 \end{array} \right)$$

There are three cases **1** $\epsilon^1 = \epsilon^2 = \epsilon^3$ isotropic medium (glass)

Main axes

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence Absorption

Drude model

there is a Cartesian coordinate system such that

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^1 & 0 & 0 \\ 0 & \epsilon^2 & 0 \\ 0 & 0 & \epsilon^3 \end{array} \right)$$

There are three cases (1) $\epsilon^1 = \epsilon^2 = \epsilon^3$ isotropic medium (glass) (2) $\epsilon^1 = \epsilon^2 \neq \epsilon^3$ uniaxial (LiNbO₃)

Main axes

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence Absorption

Drude model

there is a Cartesian coordinate system such that

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^1 & 0 & 0 \\ 0 & \epsilon^2 & 0 \\ 0 & 0 & \epsilon^3 \end{array} \right)$$

There are three cases

 $\begin{array}{l} \bullet \ \epsilon^1 = \epsilon^2 = \epsilon^3 \\ \bullet \ \epsilon^1 = \epsilon^2 \neq \epsilon^3 \\ \bullet \ \epsilon^1 < \epsilon^2 < \epsilon^3 \\ \bullet^1 < \epsilon^2 \\ \bullet^1 < \epsilon^2$

Main axes

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Maxwell's equations

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Maxwell's equations

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

• assume plane waves with fixed angular frequency

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Maxwell's equations

- assume plane waves with fixed angular frequency
- all fields are of the form

$$F(t, \boldsymbol{x}) = f e^{-i\omega t} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Maxwell's equations

- assume plane waves with fixed angular frequency
- all fields are of the form

$$F(t, \boldsymbol{x}) = f e^{-i\omega t} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

•
$$\boldsymbol{k} \times \boldsymbol{e} = \omega \mu_0 \boldsymbol{h}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

- Birefringence
- Absorption
- Drude model

Maxwell's equations

- assume plane waves with fixed angular frequency
- all fields are of the form

$$F(t, \boldsymbol{x}) = f e^{-i\omega t} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

•
$$\boldsymbol{k} \times \boldsymbol{e} = \omega \mu_0 \boldsymbol{h}$$

•
$$\boldsymbol{k} \times \boldsymbol{h} = -\omega \epsilon_0 \epsilon \boldsymbol{e}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence Absorption

Drude model

Maxwell's equations

- assume plane waves with fixed angular frequency
- all fields are of the form

$$F(t, \boldsymbol{x}) = f e^{-i\omega t} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

•
$$\boldsymbol{k} imes \boldsymbol{e} = \omega \mu_0 \boldsymbol{h}$$

•
$$\boldsymbol{k} imes \boldsymbol{h} = -\omega \epsilon_0 \, \epsilon \, \boldsymbol{e}$$

• With
$$c = 1/\sqrt{\epsilon_0 \mu_0}$$

$$(\boldsymbol{k} imes \boldsymbol{k} imes \boldsymbol{e})_i = -rac{\omega^2}{c^2} \epsilon_{ij} e_j$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence Absorption

Drude model

Maxwell's equations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- assume plane waves with fixed angular frequency
- all fields are of the form

$$F(t, \boldsymbol{x}) = f e^{-i\omega t} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

•
$$\boldsymbol{k} imes \boldsymbol{e} = \omega \mu_0 \boldsymbol{h}$$

•
$$\boldsymbol{k} imes \boldsymbol{h} = -\omega \epsilon_0 \, \epsilon \, \boldsymbol{e}$$

• With
$$c = 1/\sqrt{\epsilon_0 \mu_0}$$

$$(m{k} imes m{k} imes m{e})_i = -rac{\omega^2}{c^2} \epsilon_{ij} e_j$$

• $k_0 = \omega/c$ vacuum wave number

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

- Birefringence Absorption
- Drude model

Maxwell's equations

- assume plane waves with fixed angular frequency
- all fields are of the form

$$F(t, \boldsymbol{x}) = f e^{-i\omega t} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

•
$$\boldsymbol{k} \times \boldsymbol{e} = \omega \mu_0 \boldsymbol{h}$$

•
$$\boldsymbol{k} imes \boldsymbol{h} = -\omega \epsilon_0 \, \epsilon \, \boldsymbol{e}$$

• With
$$c = 1/\sqrt{\epsilon_0 \mu_0}$$

$$(m{k} imes m{k} imes m{e})_i = -rac{\omega^2}{c^2} \epsilon_{ij} e_j$$

- $k_0 = \omega/c$ vacuum wave number
- $m{k} = n k_0 \hat{m{k}}$ refractive index n, propagation direction $\hat{m{k}}$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

- Birefringence Absorption
- Drude model

Maxwell's equations

- assume plane waves with fixed angular frequency
- all fields are of the form

$$F(t, \boldsymbol{x}) = f e^{-i\omega t} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

•
$$\boldsymbol{k} \times \boldsymbol{e} = \omega \mu_0 \boldsymbol{h}$$

•
$$\boldsymbol{k} imes \boldsymbol{h} = -\omega \epsilon_0 \, \epsilon \, \boldsymbol{e}$$

• With
$$c = 1/\sqrt{\epsilon_0 \mu_0}$$

$$(m{k} imes m{k} imes m{e})_i = -rac{\omega^2}{c^2} \epsilon_{ij} e_j$$

- $k_0 = \omega/c$ vacuum wave number
- $\boldsymbol{k} = nk_0\hat{\boldsymbol{k}}$ refractive index n, propagation direction $\hat{\boldsymbol{k}}$
- $e = e\hat{e}$ polarization vector \hat{e}

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

- Birefringence Absorption
- Drude model

Maxwell's equations

- assume plane waves with fixed angular frequency
- all fields are of the form

$$F(t, \boldsymbol{x}) = f e^{-i\omega t} e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

•
$$\boldsymbol{k} imes \boldsymbol{e} = \omega \mu_0 \boldsymbol{h}$$

•
$$\boldsymbol{k} imes \boldsymbol{h} = -\omega \epsilon_0 \, \epsilon \, \boldsymbol{e}$$

• With
$$c = 1/\sqrt{\epsilon_0 \mu_0}$$

$$(m{k} imes m{k} imes m{e})_i = -rac{\omega^2}{c^2} \epsilon_{ij} e_j$$

- $k_0 = \omega/c$ vacuum wave number
- $\boldsymbol{k} = nk_0\hat{\boldsymbol{k}}$ refractive index n, propagation direction $\hat{\boldsymbol{k}}$
- $e = e\hat{e}$ polarization vector \hat{e}
- to be solved is the mode equation $n^{2}(\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}})_{i} = -\epsilon_{ij}\hat{\boldsymbol{e}}_{j}$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Maxwell's equations ctd.

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Maxwell's equations ctd.

•
$$\boldsymbol{c} \times \boldsymbol{b} \times \boldsymbol{a} = (\boldsymbol{c} \cdot \boldsymbol{a})\boldsymbol{b} - (\boldsymbol{c} \cdot \boldsymbol{b})\boldsymbol{a}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

- Birefringence
- Absorption
- Drude model

Maxwell's equations ctd.

•
$$\boldsymbol{c} \times \boldsymbol{b} \times \boldsymbol{a} = (\boldsymbol{c} \cdot \boldsymbol{a})\boldsymbol{b} - (\boldsymbol{c} \cdot \boldsymbol{b})\boldsymbol{a}$$

• $\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}} = (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}} - \hat{\boldsymbol{e}}$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

- Birefringence
- Absorption
- Drude model

Maxwell's equations ctd.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$\boldsymbol{c} \times \boldsymbol{b} \times \boldsymbol{a} = (\boldsymbol{c} \cdot \boldsymbol{a})\boldsymbol{b} - (\boldsymbol{c} \cdot \boldsymbol{b})\boldsymbol{a}$$

• $\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}} = (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}} - \hat{\boldsymbol{e}}$

• mode equation can be written as $n^2(\hat{e} - (\hat{k} \cdot \hat{e})\hat{k})_i = \epsilon_{ij}\hat{e}_j$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

- Birefringence
- Absorption
- Drude model

Maxwell's equations ctd.

•
$$\boldsymbol{c} \times \boldsymbol{b} \times \boldsymbol{a} = (\boldsymbol{c} \cdot \boldsymbol{a})\boldsymbol{b} - (\boldsymbol{c} \cdot \boldsymbol{b})\boldsymbol{a}$$

• $\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}} = (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}} - \hat{\boldsymbol{e}}$

• mode equation can be written as

$$n^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}})_i = \epsilon_{ij}\hat{\boldsymbol{e}}_j$$

• no solution for
$$\hat{m{k}} \parallel \hat{m{e}}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

- Birefringence
- Absorption
- Drude model

Maxwell's equations ctd.

•
$$\boldsymbol{c} \times \boldsymbol{b} \times \boldsymbol{a} = (\boldsymbol{c} \cdot \boldsymbol{a})\boldsymbol{b} - (\boldsymbol{c} \cdot \boldsymbol{b})\boldsymbol{a}$$

• $\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}} = (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}} - \hat{\boldsymbol{e}}$

• mode equation can be written as
$$n^2(\hat{m{e}}-(\hat{m{k}}\cdot\hat{m{e}})\hat{m{k}})_i=\epsilon_{ij}\hat{m{e}}_j$$

- no solution for $\hat{m{k}} \parallel \hat{m{e}}$
- therefore $\hat{m{k}} \perp \hat{m{e}}$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

- Birefringence
- Absorption
- Drude model

Maxwell's equations ctd.

•
$$\mathbf{c} \times \mathbf{b} \times \mathbf{a} = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{c} \cdot \mathbf{b})\mathbf{a}$$

•
$$\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}} = (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}} - \hat{\boldsymbol{e}}$$

- mode equation can be written as $n^2(\hat{e} - (\hat{k} \cdot \hat{e})\hat{k})_i = \epsilon_{ij}\hat{e}_j$
- no solution for $\hat{m{k}} \parallel \hat{m{e}}$
- therefore $rac{\hat{k} \perp \hat{e}}{k}$
- electromagnetic plane waves in a homogeneous medium are alway transversally polarized

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Optically isotropic medium

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Drude model

Optically isotropic medium

• if
$$\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Optically isotropic medium

• if
$$\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$$

• we find
$$\epsilon_{ij} = \epsilon \, \delta_{ij}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Optically isotropic medium

• if
$$\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$$

• we find
$$\epsilon_{ij} = \epsilon \, \delta_{ij}$$

• this is true for an arbitrary Cartesian coordinate system

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Optically isotropic medium

- if $\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$
- we find $\epsilon_{ij} = \epsilon \, \delta_{ij}$
- this is true for an arbitrary Cartesian coordinate system
- we say the medium is optically isotropic

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations

Isotropic medium

Birefringence Absorption

Optically isotropic medium

- if $\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$
- we find $\epsilon_{ij} = \epsilon \, \delta_{ij}$
- this is true for an arbitrary Cartesian coordinate system
- we say the medium is optically isotropic
- the mode equation reads

$$n^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\,\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Optically isotropic medium

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- if $\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$
- we find $\epsilon_{ij} = \epsilon \, \delta_{ij}$
- this is true for an arbitrary Cartesian coordinate system
- we say the medium is optically isotropic
- the mode equation reads

$$n^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\,\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

• $\hat{k} \parallel \hat{e}$: no solution

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations

Isotropic medium

Birefringence Absorption

Optically isotropic medium

- if $\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$
- we find $\epsilon_{ij} = \epsilon \, \delta_{ij}$
- this is true for an arbitrary Cartesian coordinate system
- we say the medium is optically isotropic
- the mode equation reads

$$n^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\,\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

• $\hat{k} \parallel \hat{e}$: no solution

•
$$\hat{k} \perp \hat{e}$$
: $n = \sqrt{\epsilon}$

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations

Isotropic medium

Birefringence Absorption

Optically isotropic medium

- if $\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$
- we find $\epsilon_{ij} = \epsilon \, \delta_{ij}$
- this is true for an arbitrary Cartesian coordinate system
- we say the medium is optically isotropic
- the mode equation reads

$$n^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\,\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

• $\hat{k} \parallel \hat{e}$: no solution

•
$$\hat{k} \perp \hat{e}$$
: $n = \sqrt{\epsilon}$

• any polarization \hat{e} is allowed.

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Optically isotropic medium

- if $\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$
- we find $\epsilon_{ij} = \epsilon \, \delta_{ij}$
- this is true for an arbitrary Cartesian coordinate system
- we say the medium is optically isotropic
- the mode equation reads

$$n^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\,\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

- $\hat{k} \parallel \hat{e}$: no solution
- $\hat{k} \perp \hat{e}$: $n = \sqrt{\epsilon}$
- any polarization \hat{e} is allowed.
- any orthogonal propagation direction $\hat{m{k}}$ is allowed

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Optically isotropic medium

- if $\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$
- we find $\epsilon_{ij} = \epsilon \, \delta_{ij}$
- this is true for an arbitrary Cartesian coordinate system
- we say the medium is optically isotropic
- the mode equation reads

$$n^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\,\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

- $\hat{k} \parallel \hat{e}$: no solution
- $\hat{k} \perp \hat{e}$: $n = \sqrt{\epsilon}$
- any polarization \hat{e} is allowed.
- any orthogonal propagation direction $\hat{m{k}}$ is allowed
- $\hat{m{h}} = \hat{m{k}} imes \hat{m{e}}$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Optically isotropic medium

- if $\epsilon^1 = \epsilon^2 = \epsilon^3 = \epsilon$
- we find $\epsilon_{ij} = \epsilon \, \delta_{ij}$
- this is true for an arbitrary Cartesian coordinate system
- we say the medium is optically isotropic
- the mode equation reads

$$n^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\,\hat{\boldsymbol{k}}) = \epsilon\hat{\boldsymbol{e}}$$

- $\hat{k} \parallel \hat{e}$: no solution
- $\hat{k} \perp \hat{e}$: $n = \sqrt{\epsilon}$
- any polarization \hat{e} is allowed.
- any orthogonal propagation direction $\hat{m{k}}$ is allowed
- $\hat{m{h}} = \hat{m{k}} imes \hat{m{e}}$
- \hat{k} , \hat{e} , \hat{h} is right handed set of orthogonal unit vectors

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Optical axis

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Optical axis

- Two eigenvalues of ϵ_{ij} are equal, we call them ordinary

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Drude model

Optical axis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Two eigenvalues of ϵ_{ij} are equal, we call them ordinary

• the extraordinary eigenvalue is different

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence Absorption

Drude model

Optical axis

- Two eigenvalues of ϵ_{ij} are equal, we call them ordinary
- the extraordinary eigenvalue is different
- it belongs to the optical axis (here \hat{z})

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^{\mathrm{o}} & 0 & 0 \\ 0 & \epsilon^{\mathrm{o}} & 0 \\ 0 & 0 & \epsilon^{\mathrm{e}} \end{array}\right)$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Optical axis

- Two eigenvalues of ϵ_{ij} are equal, we call them ordinary
- the extraordinary eigenvalue is different
- it belongs to the optical axis (here \hat{z})

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^{\mathrm{o}} & 0 & 0 \\ 0 & \epsilon^{\mathrm{o}} & 0 \\ 0 & 0 & \epsilon^{\mathrm{e}} \end{array}\right)$$

• ordinary beam is polarized \perp optical axis

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Optical axis

- Two eigenvalues of ϵ_{ij} are equal, we call them ordinary
- the extraordinary eigenvalue is different
- it belongs to the optical axis (here \hat{z})

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^{\mathrm{o}} & 0 & 0 \\ 0 & \epsilon^{\mathrm{o}} & 0 \\ 0 & 0 & \epsilon^{\mathrm{e}} \end{array} \right)$$

• ordinary beam is polarized \perp optical axis

•
$$\hat{\boldsymbol{e}} = \cos\phi\,\hat{\boldsymbol{x}} + \sin\phi\,\hat{\boldsymbol{y}}$$
, $\hat{\boldsymbol{k}} = \hat{\boldsymbol{z}}$, $n^{\mathrm{o}} = \sqrt{\epsilon^{\mathrm{o}}}$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Optical axis

- Two eigenvalues of ϵ_{ij} are equal, we call them ordinary
- the extraordinary eigenvalue is different
- it belongs to the optical axis (here \hat{z})

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^{\mathrm{o}} & 0 & 0 \\ 0 & \epsilon^{\mathrm{o}} & 0 \\ 0 & 0 & \epsilon^{\mathrm{e}} \end{array}\right)$$

- ordinary beam is polarized \perp optical axis
- $\hat{\boldsymbol{e}} = \cos\phi\,\hat{\boldsymbol{x}} + \sin\phi\,\hat{\boldsymbol{y}}$, $\hat{\boldsymbol{k}} = \hat{\boldsymbol{z}}$, $n^{\mathrm{o}} = \sqrt{\epsilon^{\mathrm{o}}}$
- extraordinary beam is polarized || optical axis

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Optical axis

- Two eigenvalues of ϵ_{ij} are equal, we call them ordinary
- the extraordinary eigenvalue is different
- it belongs to the optical axis (here \hat{z})

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^{\mathrm{o}} & 0 & 0 \\ 0 & \epsilon^{\mathrm{o}} & 0 \\ 0 & 0 & \epsilon^{\mathrm{e}} \end{array}\right)$$

- ordinary beam is polarized \perp optical axis
- $\hat{\boldsymbol{e}} = \cos\phi\,\hat{\boldsymbol{x}} + \sin\phi\,\hat{\boldsymbol{y}}$, $\hat{\boldsymbol{k}} = \hat{\boldsymbol{z}}$, $n^{\mathrm{o}} = \sqrt{\epsilon^{\mathrm{o}}}$
- extraordinary beam is polarized || optical axis

•
$$\hat{m{e}}=\hat{m{z}}$$
, $\hat{m{k}}=\coslpha\,\hat{m{x}}+\sinlpha\,\hat{m{y}}$, $n^{
m e}=\sqrt{\epsilon^{
m e}}$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Birefringence

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Drude model

Birefringence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• what happens if a beam is polarized neither parallel nor perpendicular to optical axis?

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Birefringence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- what happens if a beam is polarized neither parallel nor perpendicular to optical axis?
- e. g. if it is unpolarized

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Birefringence

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- what happens if a beam is polarized neither parallel nor perpendicular to optical axis?
- e. g. if it is unpolarized
- when entering the medium it splits into an ordinary and an extraordinary beam

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Drude model

Birefringence

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- what happens if a beam is polarized neither parallel nor perpendicular to optical axis?
- e. g. if it is unpolarized
- when entering the medium it splits into an ordinary and an extraordinary beam
- which propagate with different refractive index

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence Absorption
- Drude model

Birefringence

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- what happens if a beam is polarized neither parallel nor perpendicular to optical axis?
- e. g. if it is unpolarized
- when entering the medium it splits into an ordinary and an extraordinary beam
- which propagate with different refractive index
- they will leave the the medium at different locations

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence Absorption
- Drude model

Birefringence

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- what happens if a beam is polarized neither parallel nor perpendicular to optical axis?
- e. g. if it is unpolarized
- when entering the medium it splits into an ordinary and an extraordinary beam
- which propagate with different refractive index
- they will leave the the medium at different locations
- being polarized

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence Absorption
- Drude model

Birefringence

- what happens if a beam is polarized neither parallel nor perpendicular to optical axis?
- e. g. if it is unpolarized
- when entering the medium it splits into an ordinary and an extraordinary beam
- which propagate with different refractive index
- they will leave the the medium at different locations
- being polarized
- double refraction, or birefringence

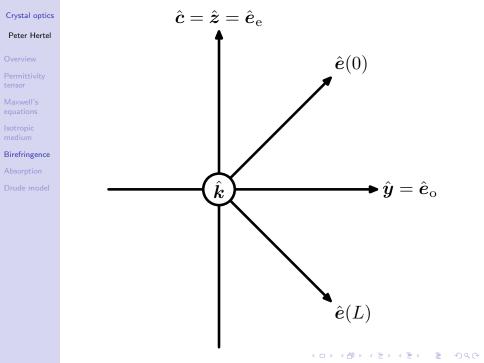
Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence Absorption
- Drude model

Birefringence

- what happens if a beam is polarized neither parallel nor perpendicular to optical axis?
- e. g. if it is unpolarized
- when entering the medium it splits into an ordinary and an extraordinary beam
- which propagate with different refractive index
- they will leave the the medium at different locations
- being polarized
- double refraction, or birefringence
- calcite (at which birefringence was discovered)


Peter Hertel

Overview

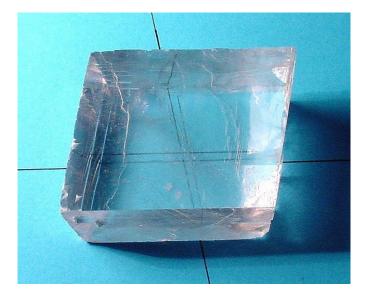
- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence Absorption
- Drude model

Birefringence

- what happens if a beam is polarized neither parallel nor perpendicular to optical axis?
- e. g. if it is unpolarized
- when entering the medium it splits into an ordinary and an extraordinary beam
- which propagate with different refractive index
- they will leave the the medium at different locations
- being polarized
- double refraction, or birefringence
- calcite (at which birefringence was discovered)
- elastooptics

Crystal optics	A 45 degree polarized wave enters the crystal and leaves it at
Peter Hertel	-45 degrees polarization.
Overview	
Permittivity tensor	
Maxwell's equations	
lsotropic medium	
Birefringence	
Absorption	
Drude model	

Peter Hertel


Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

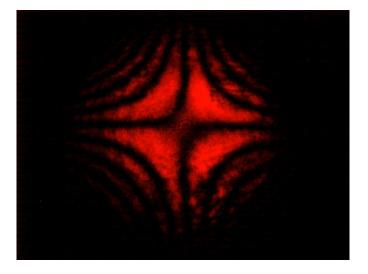
Birefringence Absorption

(日)、

э

Birefringence, or double refraction, by calcite

Peter Hertel


Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence Absorption

Normally isotropic polymers become birefringent when stressed. Observed with a polarizer.

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Remarks

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Drude model

Remarks

• Only the ordinary beam may be unpolarized

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

Remarks

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Only the ordinary beam may be unpolarized
- optically biaxial media have three different eigenvalues of permittivity tensor ϵ_{ij}

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Drude model

• Only the ordinary beam may be unpolarized

- optically biaxial media have three different eigenvalues of permittivity tensor ϵ_{ij}
- correspondingly three orthogonal directions

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^1 & 0 & 0 \\ 0 & \epsilon^2 & 0 \\ 0 & 0 & \epsilon^3 \end{array} \right)$$

Remarks

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- lsotropic medium
- Birefringence
- Absorption
- Drude model

• Only the ordinary beam may be unpolarized

- optically biaxial media have three different eigenvalues of permittivity tensor ϵ_{ij}
- correspondingly three orthogonal directions

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^1 & 0 & 0\\ 0 & \epsilon^2 & 0\\ 0 & 0 & \epsilon^3 \end{array}\right)$$

- beams polarized along these axes propagate with different refractive indexes $n^a=\sqrt{\epsilon^a}$

Remarks

Peter Hertel

Overview

- Permittivity tensor
- Maxwell's equations
- Isotropic medium
- Birefringence
- Absorption
- Drude model

• Only the ordinary beam may be unpolarized

- optically biaxial media have three different eigenvalues of permittivity tensor ϵ_{ij}
- correspondingly three orthogonal directions

$$\epsilon_{ij} = \left(\begin{array}{ccc} \epsilon^1 & 0 & 0\\ 0 & \epsilon^2 & 0\\ 0 & 0 & \epsilon^3 \end{array}\right)$$

- beams polarized along these axes propagate with different refractive indexes $n^a=\sqrt{\epsilon^a}$
- rather difficult to show that there are two optical axes

Remarks

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Absorption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• for simplicity, assume isotropic medium

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

• for simplicity, assume isotropic medium

• $\epsilon = \epsilon' + i\epsilon''$

Absorption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

• for simplicity, assume isotropic medium

- $\epsilon = \epsilon' + i\epsilon''$
- nearly transparent medium, $\epsilon^{\prime\prime} \ll \epsilon^\prime$

Absorption

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

• for simplicity, assume isotropic medium

- $\epsilon = \epsilon' + i\epsilon''$
- nearly transparent medium, $\epsilon^{\prime\prime} \ll \epsilon^\prime$

• recall
$$\bar{n}^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}}\cdot\hat{\boldsymbol{e}})\hat{\boldsymbol{k}}) = \epsilon\hat{\boldsymbol{e}}$$

Absorption

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• for simplicity, assume isotropic medium

- $\epsilon = \epsilon' + i\epsilon''$
- nearly transparent medium, $\epsilon^{\,\prime\prime} \ll \epsilon^{\,\prime}$
- recall $\bar{n}^2(\hat{\boldsymbol{e}} (\hat{\boldsymbol{k}}\cdot\hat{\boldsymbol{e}})\,\hat{\boldsymbol{k}}) = \epsilon\hat{\boldsymbol{e}}$
- $\hat{m{k}} \perp \hat{m{e}}$ remains true

Absorption

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• for simplicity, assume isotropic medium

- $\epsilon = \epsilon' + i\epsilon''$
- nearly transparent medium, $\epsilon^{\prime\prime} \ll \epsilon^\prime$

• recall
$$\bar{n}^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}}\cdot\hat{\boldsymbol{e}})\hat{\boldsymbol{k}}) = \epsilon\hat{\boldsymbol{e}}$$

• $\hat{m{k}} \perp \hat{m{e}}$ remains true

•
$$\bar{n} = \sqrt{\epsilon' + i\epsilon''}$$
 is complex

Absorption

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• for simplicity, assume isotropic medium

• $\epsilon = \epsilon' + i\epsilon''$

- nearly transparent medium, $\epsilon^{\prime\prime} \ll \epsilon^\prime$

• recall
$$\bar{n}^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}}\cdot\hat{\boldsymbol{e}})\hat{\boldsymbol{k}}) = \epsilon\hat{\boldsymbol{e}}$$

• $\hat{m{k}} \perp \hat{m{e}}$ remains true

•
$$\bar{n} = \sqrt{\epsilon' + i\epsilon''}$$
 is complex

• With
$$n = \sqrt{\epsilon'}$$
 one may write $\bar{n} \approx n + \mathrm{i} \frac{\epsilon''}{2n}$

Absorption

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• for simplicity, assume isotropic medium

- $\epsilon = \epsilon' + i\epsilon''$
- nearly transparent medium, $\epsilon'' \ll \epsilon'$

• recall
$$\bar{n}^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

• $\hat{m{k}} \perp \hat{m{e}}$ remains true

•
$$\bar{n} = \sqrt{\epsilon' + i\epsilon''}$$
 is complex

• With
$$n = \sqrt{\epsilon'}$$
 one may write $\bar{n} \approx n + i \frac{\epsilon''}{2n}$

• with $lpha=\epsilon^{\prime\prime}k_0/n$ and $z=\hat{m k}\cdotm x$ one finds

$$\boldsymbol{E}(t,\boldsymbol{x}) = \boldsymbol{E}(0,0) e^{-\mathrm{i}\omega t} e^{\mathrm{i}nk_0 z} e^{-\alpha z/2}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

- for simplicity, assume isotropic medium
- $\epsilon = \epsilon' + i\epsilon''$
- nearly transparent medium, $\epsilon^{\prime\prime} \ll \epsilon^\prime$

• recall
$$\bar{n}^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

• $\hat{m{k}} \perp \hat{m{e}}$ remains true

•
$$\bar{n} = \sqrt{\epsilon' + i\epsilon''}$$
 is complex

• With
$$n = \sqrt{\epsilon'}$$
 one may write $\bar{n} \approx n + \mathrm{i} \frac{\epsilon''}{2n}$

• with $\alpha = \epsilon'' k_0/n$ and $z = \hat{k} \cdot x$ one finds

$$\boldsymbol{E}(t,\boldsymbol{x}) = \boldsymbol{E}(0,0) e^{-\mathrm{i}\omega t} e^{\mathrm{i}nk_0 z} e^{-\alpha z/2}$$

• $S \propto |\mathbf{E}|^2$, $S(z) = S(0) e^{-\alpha z}$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

- for simplicity, assume isotropic medium
- $\epsilon = \epsilon' + i\epsilon''$
- nearly transparent medium, $\epsilon^{\prime\prime} \ll \epsilon^\prime$

• recall
$$\bar{n}^2(\hat{\boldsymbol{e}} - (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{e}})\hat{\boldsymbol{k}}) = \epsilon \hat{\boldsymbol{e}}$$

• $\hat{m{k}} \perp \hat{m{e}}$ remains true

•
$$\bar{n} = \sqrt{\epsilon' + i\epsilon''}$$
 is complex

• With
$$n = \sqrt{\epsilon'}$$
 one may write $\bar{n} \approx n + \mathrm{i} \frac{\epsilon''}{2n}$

• with $lpha=\epsilon^{\,\prime\prime}\,k_0/n$ and $z=\hat{m k}\cdotm x$ one finds

$$\boldsymbol{E}(t,\boldsymbol{x}) = \boldsymbol{E}(0,0) e^{-\mathrm{i}\omega t} e^{\mathrm{i}nk_0 z} e^{-\alpha z/2}$$

•
$$S \propto |\mathbf{E}|^2$$
, $S(z) = S(0) e^{-\alpha z}$

• α is absorption constant

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

Drude model

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

Drude model

• consider typical electron with mass m and charge q=-e

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• consider typical electron with mass m and charge q = -e

• $oldsymbol{x}$ is deviation from equilibrium position

Drude model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

lsotropic medium

Birefringence

Absorption

Drude model

• consider typical electron with mass m and charge q = -e

Drude model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $oldsymbol{x}$ is deviation from equilibrium position
- damped harmonic oscillatation

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• consider typical electron with mass m and charge q=-e

Drude model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- \boldsymbol{x} is deviation from equilibrium position
- damped harmonic oscillatation

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$$

• Fourier transform it

$$m(-\omega^2 - \mathrm{i}\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q\tilde{\boldsymbol{E}}$$

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• consider typical electron with mass m and charge q = -e

- \boldsymbol{x} is deviation from equilibrium position
- damped harmonic oscillatation

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$$

• Fourier transform it

$$m(-\omega^2 - \mathrm{i}\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q\tilde{\boldsymbol{E}}$$

• polarization is $oldsymbol{P}=Nqoldsymbol{x}$ with electron density N

Drude model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

- consider typical electron with mass m and charge q=-e
- \boldsymbol{x} is deviation from equilibrium position
- damped harmonic oscillatation

$$m(\ddot{\boldsymbol{x}} + \Gamma \dot{\boldsymbol{x}} + \Omega^2 \boldsymbol{x}) = q\boldsymbol{E}$$

• Fourier transform it

$$m(-\omega^2 - \mathrm{i}\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q\tilde{\boldsymbol{E}}$$

- polarization is $oldsymbol{P}=Nqoldsymbol{x}$ with electron density N
- susceptibility

$$\chi(\omega) = \chi(0) \frac{\Omega^2}{\Omega^2 - \omega^2 - i\Gamma\omega}$$

Drude model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter Hertel

Overview

Permittivity tensor

Maxwell's equations

Isotropic medium

Birefringence

Absorption

Drude model

• consider typical electron with mass m and charge q=-e

Drude model

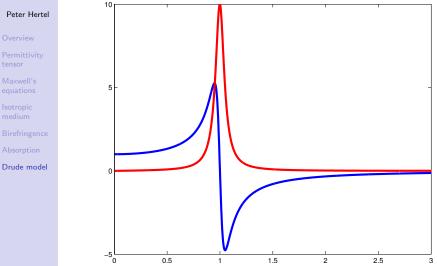
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- \boldsymbol{x} is deviation from equilibrium position
- damped harmonic oscillatation

$$m(\ddot{\boldsymbol{x}}+\Gamma\dot{\boldsymbol{x}}+\Omega^2\boldsymbol{x})=q\boldsymbol{E}$$

• Fourier transform it

$$m(-\omega^2 - \mathrm{i}\Gamma + \Omega^2)\tilde{\boldsymbol{x}} = q\tilde{\boldsymbol{E}}$$


- polarization is $oldsymbol{P}=Nqoldsymbol{x}$ with electron density N
- susceptibility

$$\chi(\omega) = \chi(0) \frac{\Omega^2}{\Omega^2 - \omega^2 - i\Gamma\omega}$$

static susceptibility

$$\chi(0) = \frac{Nq^2}{m\Omega^2\epsilon_0}$$

Real (blue) and imaginary part (red) of susceptibility $\chi(\omega)$ relative to $\chi(0)$ over ω/Ω . $\Gamma/\Omega = 0.1$