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Overview

• Crystal optics investigates the propagation of plane waves
in a homogeneous medium

• The susceptibility tensor is real and symmetric

• three eigenvalues equal: isotropic medium

• only two are equal: uniaxial medium

• all three are different: biaxial medium

• Birefringence

• Absorption

• Drude model
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Linear medium

• for a sufficiently weak light wave, the polarization is linear
in the electric field strength

• however retarded, but local

Pi(t,x) = ε0

∫ ∞
0

dτ Gij(τ)Ej(t− τ,x)

• Einstein’s summation convention: sum over j from 1 to 3

• Fourier transform

F (t) =

∫
dω

2π
f(ω) e

−iωt

• Fourier transform F̃ (ω) of F (t) here denoted by f(ω)

• the Fourier transform of the dispacement is

di(ω,x) = ε0 εij(ω) ej(ω,x)

• εij(ω) = δij + χij(ω) where χij = G̃ij
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Refraction and absorption

• decompose

εij = ε ′ij + i ε ′′ij

• refractive part

ε ′ij =
εij + ε∗ji

2

• absorptive part

ε ′′ij =
εij − ε∗ji

2i
• both are Hermitian: Aij = A∗ji
• we shall see later while absorptive part causes absorption

• i. e. the conversion of field energy into internal energy
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Transparent medium

• assume ε ′′ij(ω) ≈ 0 for the frequencies under discussion

• then εij = ε ′ij is hermitian

• recall Onsager’s relations

εij(ω;E,B) = εji(ω;E,−B)

• where E,B are static external fields

• without external induction field

εji = εij = ε∗ij
• no absorption, no external induction: εij is a real

symmetric matrix

• εij can be diagonalized by an orthogonal matrix
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Main axes

there is a Cartesian coordinate system such that

εij =

 ε1 0 0
0 ε2 0
0 0 ε3


There are three cases

1 ε1 = ε2 = ε3 isotropic medium (glass)

2 ε1 = ε2 6= ε3 uniaxial (LiNbO3)

3 ε1 < ε2 < ε3 biaxial (KNbO3)
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Maxwell’s equations

• assume plane waves with fixed angular frequency

• all fields are of the form

F (t,x) = f e
−iωt

e
ik · x

• k × e = ωµ0h

• k × h = −ωε0 ε e
• With c = 1/

√
ε0µ0

(k × k × e)i = −ω
2

c2
εijej

• k0 = ω/c vacuum wave number

• k = nk0k̂ refractive index n, propagation direction k̂

• e = eê polarization vector ê

• to be solved is the mode equation

n2(k̂ × k̂ × ê)i = −εij êj
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Crystal optics

Peter Hertel

Overview

Permittivity
tensor

Maxwell’s
equations

Isotropic
medium

Birefringence

Absorption

Drude model

Maxwell’s equations

• assume plane waves with fixed angular frequency

• all fields are of the form

F (t,x) = f e
−iωt

e
ik · x

• k × e = ωµ0h

• k × h = −ωε0 ε e

• With c = 1/
√
ε0µ0

(k × k × e)i = −ω
2

c2
εijej

• k0 = ω/c vacuum wave number

• k = nk0k̂ refractive index n, propagation direction k̂
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Crystal optics

Peter Hertel

Overview

Permittivity
tensor

Maxwell’s
equations

Isotropic
medium

Birefringence

Absorption

Drude model

Maxwell’s equations

• assume plane waves with fixed angular frequency

• all fields are of the form

F (t,x) = f e
−iωt

e
ik · x

• k × e = ωµ0h

• k × h = −ωε0 ε e
• With c = 1/

√
ε0µ0

(k × k × e)i = −ω
2

c2
εijej

• k0 = ω/c vacuum wave number

• k = nk0k̂ refractive index n, propagation direction k̂
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• to be solved is the mode equation

n2(k̂ × k̂ × ê)i = −εij êj



Crystal optics

Peter Hertel

Overview

Permittivity
tensor

Maxwell’s
equations

Isotropic
medium

Birefringence

Absorption

Drude model

Maxwell’s equations

• assume plane waves with fixed angular frequency

• all fields are of the form

F (t,x) = f e
−iωt

e
ik · x

• k × e = ωµ0h

• k × h = −ωε0 ε e
• With c = 1/

√
ε0µ0

(k × k × e)i = −ω
2

c2
εijej

• k0 = ω/c vacuum wave number

• k = nk0k̂ refractive index n, propagation direction k̂
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Maxwell’s equations ctd.

• c× b× a = (c · a)b− (c · b)a

• k̂ × k̂ × ê = (k̂ · ê)k̂ − ê

• mode equation can be written as

n2(ê− (k̂ · ê)k̂)i = εij êj

• no solution for k̂ ‖ ê

• therefore k̂ ⊥ ê

• electromagnetic plane waves in a homogeneous medium
are alway transversally polarized
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Optically isotropic medium

• if ε1 = ε2 = ε3 = ε

• we find εij = ε δij

• this is true for an arbitrary Cartesian coordinate system

• we say the medium is optically isotropic

• the mode equation reads

n2(ê− (k̂ · ê) k̂) = εê

• k̂ ‖ ê: no solution

• k̂ ⊥ ê: n =
√
ε

• any polarization ê is allowed.

• any orthogonal propagation direction k̂ is allowed

• ĥ = k̂ × ê

• k̂, ê, ĥ is right handed set of orthogonal unit vectors
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• k̂, ê, ĥ is right handed set of orthogonal unit vectors



Crystal optics

Peter Hertel

Overview

Permittivity
tensor

Maxwell’s
equations

Isotropic
medium

Birefringence

Absorption

Drude model

Optically isotropic medium

• if ε1 = ε2 = ε3 = ε

• we find εij = ε δij

• this is true for an arbitrary Cartesian coordinate system

• we say the medium is optically isotropic

• the mode equation reads
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• k̂, ê, ĥ is right handed set of orthogonal unit vectors



Crystal optics

Peter Hertel

Overview

Permittivity
tensor

Maxwell’s
equations

Isotropic
medium

Birefringence

Absorption

Drude model

Optically isotropic medium

• if ε1 = ε2 = ε3 = ε

• we find εij = ε δij

• this is true for an arbitrary Cartesian coordinate system

• we say the medium is optically isotropic

• the mode equation reads
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Optical axis

• Two eigenvalues of εij are equal, we call them ordinary

• the extraordinary eigenvalue is different

• it belongs to the optical axis (here ẑ)

εij =

 εo 0 0
0 εo 0
0 0 εe


• ordinary beam is polarized ⊥ optical axis

• ê = cosφ x̂ + sinφ ŷ, k̂ = ẑ, no =
√
εo

• extraordinary beam is polarized ‖ optical axis

• ê = ẑ, k̂ = cosα x̂ + sinα ŷ, ne =
√
εe



Crystal optics

Peter Hertel

Overview

Permittivity
tensor

Maxwell’s
equations

Isotropic
medium

Birefringence

Absorption

Drude model

Optical axis

• Two eigenvalues of εij are equal, we call them ordinary

• the extraordinary eigenvalue is different

• it belongs to the optical axis (here ẑ)
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• ê = cosφ x̂ + sinφ ŷ, k̂ = ẑ, no =
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Birefringence

• what happens if a beam is polarized neither parallel nor
perpendicular to optical axis?

• e. g. if it is unpolarized

• when entering the medium it splits into an ordinary and an
extraordinary beam

• which propagate with different refractive index

• they will leave the the medium at different locations

• being polarized

• double refraction , or birefringence

• calcite (at which birefringence was discovered)

• elastooptics
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ĉ = ẑ = êe

ŷ = êo
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ê(L)

k̂
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A 45 degree polarized wave enters the crystal and leaves it at
-45 degrees polarization.
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Birefringence, or double refraction, by calcite
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Normally isotropic polymers become birefringent when stressed.
Observed with a polarizer.
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Remarks

• Only the ordinary beam may be unpolarized

• optically biaxial media have three different eigenvalues of
permittivity tensor εij

• correspondingly three orthogonal directions

εij =

 ε1 0 0
0 ε2 0
0 0 ε3


• beams polarized along these axes propagate with different

refractive indexes na =
√
εa

• rather difficult to show that there are two optical axes
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Absorption

• for simplicity, assume isotropic medium

• ε = ε ′ + iε ′′

• nearly transparent medium, ε ′′ � ε ′

• recall n̄2(ê− (k̂ · ê) k̂) = εê

• k̂ ⊥ ê remains true

• n̄ =
√
ε ′ + iε ′′ is complex

• With n =
√
ε ′ one may write

n̄ ≈ n+ i
ε ′′

2n

• with α = ε ′′ k0/n and z = k̂ · x one finds

E(t,x) = E(0, 0) e
−iωt

e
ink0z e

−αz/2

• S ∝ |E|2, S(z) = S(0) e
−αz

• α is absorption constant



Crystal optics

Peter Hertel

Overview

Permittivity
tensor

Maxwell’s
equations

Isotropic
medium

Birefringence

Absorption

Drude model

Absorption

• for simplicity, assume isotropic medium

• ε = ε ′ + iε ′′

• nearly transparent medium, ε ′′ � ε ′
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Drude model

• consider typical electron with mass m and charge q = −e
• x is deviation from equilibrium position

• damped harmonic oscillatation

m(ẍ + Γẋ + Ω2x) = qE

• Fourier transform it

m(−ω2 − iΓ + Ω2)x̃ = qẼ

• polarization is P = Nqx with electron density N

• susceptibility

χ(ω) = χ(0)
Ω2

Ω2 − ω2 − iΓω
• static susceptibility

χ(0) =
Nq2

mΩ2ε0
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Real (blue) and imaginary part (red) of susceptibility χ(ω)
relative to χ(0) over ω/Ω. Γ/Ω = 0.1
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