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Overview

e Crystal optics investigates the propagation of plane waves
in a homogeneous medium

e The susceptibility tensor is real and symmetric
e three eigenvalues equal: isotropic medium

e only two are equal: uniaxial medium

e all three are different: biaxial medium

e Birefringence

e Absorption

e Drude model
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Permitivity e for a sufficiently weak light wave, the polarization is linear
in the electric field strength

e however retarded, but local
Pt z) = e / dr Giy(7) By (t — 7 )
0

e Einstein’s summation convention: sum over j from 1 to 3

e Fourier transform
PO = [ G2 rw)e
i
e Fourier transform F(w) of F(t) here denoted by f(w)
e the Fourier transform of the dispacement is
di(w, ) = € €5 (w) ej(w, )

o €i(w) = 0i5 + xij(w) where x;; = CNJij
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Isotropic

medium ) refractive part
Birefringence .. *
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Drude model
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Permittivity
tensor

e decompose

€j = el-’j + iei/]’-
e refractive part
_ €ij + E;‘i
T Ty
e absorptive part

ok
n G T €

CADS

e both are Hermitian: A;; = A;‘-i

€

e we shall see later while absorptive part causes absorption

i. e. the conversion of field energy into internal energy
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Permittivity
tensor

o assume ¢ (w) ~ 0 for the frequencies under discussion
e then ¢; = ei’j is hermitian
e recall Onsager's relations
€ij(w; €, B) = €ji(w; €, —B)
e where £, B are static external fields
e without external induction field
*
€ji = €ij = €ij
e no absorption, no external induction: ¢;; is a real
symmetric matrix

€;; can be diagonalized by an orthogonal matrix
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Permittivity
tensor

there is a Cartesian coordinate system such that

el 0 0
€j = 0 € 0
0 0 €

There are three cases
®c=c=¢  isotropic medium (glass)

® ' =c>#e  uniaxial (LiNbO3)
© ! <e? < biaxial (KNbO3)
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e assume plane waves with fixed angular frequency

e all fields are of the form

Maxwell's . . .
equations F(t, IE) — fe 1wt elk xr
L4 k X e = wuoh
o kxh=—-weee
e With c =1/ /eopo
w?
(k X k X e)i = _07267/]6]

ko =w/c  vacuum wave number

A~

k = nkok  refractive index n, propagation direction k

e e =cé polarization vector e

to be solved is the mode equation

722(’23 X ]25 X é)l = —Gijéj
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tensor

Maxwell's

equations e C X b X a = (C . a)b _ (C . b)a
Isotropic A - AN T A~

medium i k: X k: X e = (k: . e)k — e
Birefringence

Absorption

Drude model
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Maxwell's
equations

cxbxa=(c-a)b—(c-ba
kxkxe=(k-ek—e

e mode equation can be written as
n’(é— (k- &)k); = €€,

e no solution for k || &

o therefore k | &

e electromagnetic plane waves in a homogeneous medium
are alway transversally polarized
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ifel=e2=e3=¢

we find €;; = €0;;

this is true for an arbitrary Cartesian coordinate system
we say the medium is optically isotropic

the mode equation reads
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medium

Optically isotropic medium

ifel=e2=e3=¢

we find €;; = €0;;

this is true for an arbitrary Cartesian coordinate system
we say the medium is optically isotropic

the mode equation reads

n*(e— (k-e)k) =ce

k || &: no solution

kEle n= Ve

any polarization é is allowed.

any orthogonal propagation direction k is allowed
h=kxe

12:, e, his right handed set of orthogonal unit vectors
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e Two eigenvalues of ¢;; are equal, we call them ordinary

the extraordinary eigenvalue is different

it belongs to the optical axis (here 2)

Birefringence

e 0 0
€ij = 0 € 0
0 0 e°

ordinary beam is polarized 1 optical axis
€=cospx+sinogy, k=% n°=+/e
extraordinary beam is polarized || optical axis

A~

ee=2 k=cosax+sinay, n®=+e°
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Birefringence

what happens if a beam is polarized neither parallel nor
perpendicular to optical axis?

e. g. if it is unpolarized

when entering the medium it splits into an ordinary and an
extraordinary beam

which propagate with different refractive index

they will leave the the medium at different locations
being polarized

double refraction , or birefringence

calcite (at which birefringence was discovered)

elastooptics
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A 45 degree polarized wave enters the crystal and leaves it at
-45 degrees polarization.
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Absorption

Drude model

Birefringence, or double refraction, by calcite
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Normally isotropic polymers become birefringent when stressed.
Observed with a polarizer.
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Birefringence

Remarks

Only the ordinary beam may be unpolarized

optically biaxial media have three different eigenvalues of
permittivity tensor ¢;;

correspondingly three orthogonal directions

el 0 0
€ij = 0 62 0
0 0 €

beams polarized along these axes propagate with different
refractive indexes n® = /€

rather difficult to show that there are two optical axes
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for simplicity, assume isotropic medium

o e =¢'+ie”

nearly transparent medium, €¢” < €’
recall n2(é — (k- &) k) = eé

e k L & remains true

n =+e'+ie” is complex

With n = V¢’ one may write
1
n~n+i——
2n

with o= ¢”ko/n and z = k - = one finds

Absorption

E(t,z) = E(0,0)e_lwt emkoz e—ozz/2
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e « is absorption constant
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QZ
=v0) o
X(w) = X(0) gy
e static susceptibility
Ng?
x(0) =

mQ260
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Real (blue) and imaginary part (red) of susceptibility x(w)
relative to x(0) over w/Q. I'/Q2 = 0.1
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