Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical Activity

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

October/November 2011

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Roadmap

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Roadmap

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Permittivity

Peter Hertel

Roadmap

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

- Permittivity
- No external fields

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Roadmap

- Permittivity
- No external fields
- External electric field

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Roadmap

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- Permittivity
- No external fields
- External electric field
- External magnetic field

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Roadmap

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Permittivity
- No external fields
- External electric field
- External magnetic field
- Optical activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

The electromagnetic field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

The electromagnetic field

action on charged particles

 $\dot{\boldsymbol{p}} = q\left\{\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}\right\}$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

The electromagnetic field

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• action on charged particles

 $\dot{\boldsymbol{p}} = q\left\{\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}\right\}$

• Fourier transform fields

$$F(t, \boldsymbol{x}) = \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^3 q}{(2\pi)^3} \tilde{F}(\omega, \boldsymbol{q}) e^{-\mathrm{i}\omega t} e^{\mathrm{i}\boldsymbol{q} \cdot \boldsymbol{x}}$$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

The electromagnetic field

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

action on charged particles

 $\dot{\boldsymbol{p}} = q \left\{ \boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \right\}$

• Fourier transform fields

$$F(t, \boldsymbol{x}) = \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^3 q}{(2\pi)^3} \tilde{F}(\omega, \boldsymbol{q}) e^{-\mathrm{i}\omega t} e^{\mathrm{i}\boldsymbol{q} \cdot \boldsymbol{x}}$$

• Maxwell's equations with $\rho = 0$, j = 0, $\mu = 1$ $\boldsymbol{q} \times \tilde{\boldsymbol{H}} = -\omega\epsilon_0\epsilon\tilde{\boldsymbol{E}}$ $\boldsymbol{q} \times \tilde{\boldsymbol{E}} = \omega\mu_0\tilde{\boldsymbol{H}}$

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

The electromagnetic field

• action on charged particles

 $\dot{\boldsymbol{p}} = q\left\{\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}\right\}$

• Fourier transform fields

$$F(t, \boldsymbol{x}) = \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^3 q}{(2\pi)^3} \tilde{F}(\omega, \boldsymbol{q}) e^{-\mathrm{i}\omega t} e^{\mathrm{i}\boldsymbol{q} \cdot \boldsymbol{x}}$$

• Maxwell's equations with arrho=0, $oldsymbol{j}=0$, $\mu=1$

$$egin{array}{rcl} m{q} imes ilde{m{H}}&=&-\omega\epsilon_0\epsilon ilde{m{E}}\ m{q} imes ilde{m{E}}&=&\omega\mu_0 ilde{m{H}} \end{array}$$

• note that \tilde{E} , \tilde{H} and permittivity ϵ are Fourier transforms and depend on (ω, q) .

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Permittivity

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Roadmap

Optical Activity

Peter Hertel

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • most general causal linear relationship between electrical field and polarization field

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, \int \mathrm{d}^3 \boldsymbol{\xi} \, G_{ij}(\tau, \boldsymbol{\xi}) \, E_j(t - \tau, \boldsymbol{x} - \boldsymbol{\xi})$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Peter Hertel

Optical Activity

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • most general causal linear relationship between electrical field and polarization field

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, \int \mathrm{d}^3 \boldsymbol{\xi} \, G_{ij}(\tau, \boldsymbol{\xi}) \, E_j(t - \tau, \boldsymbol{x} - \boldsymbol{\xi})$$

$$\tilde{P}_i(\omega, \boldsymbol{q}) = \epsilon_0 \, \chi_{ij}(\omega, \boldsymbol{q}) \, \tilde{E}_j(\omega, \boldsymbol{q})$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Peter Hertel

Optical Activity

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • most general causal linear relationship between electrical field and polarization field

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, \int \mathrm{d}^3 \boldsymbol{\xi} \, G_{ij}(\tau, \boldsymbol{\xi}) \, E_j(t - \tau, \boldsymbol{x} - \boldsymbol{\xi})$$

$$\tilde{P}_{i}(\omega, \boldsymbol{q}) = \epsilon_{0} \chi_{ij}(\omega, \boldsymbol{q}) \tilde{E}_{j}(\omega, \boldsymbol{q})$$
$$\tilde{D}_{i} = \epsilon_{0} \tilde{E}_{i} + \tilde{P}_{i}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Peter Hertel

Optical Activity

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • most general causal linear relationship between electrical field and polarization field

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, \int \mathrm{d}^3 \boldsymbol{\xi} \, G_{ij}(\tau, \boldsymbol{\xi}) \, E_j(t - \tau, \boldsymbol{x} - \boldsymbol{\xi})$$

$$\tilde{P}_{i}(\omega, \boldsymbol{q}) = \epsilon_{0} \chi_{ij}(\omega, \boldsymbol{q}) \tilde{E}_{j}(\omega, \boldsymbol{q})$$
$$\tilde{D}_{i} = \epsilon_{0} \tilde{E}_{i} + \tilde{P}_{i}$$

•
$$\tilde{D}_i = \epsilon_0 \, \epsilon_{ij} \tilde{E}_i$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Activity Peter Hertel

Optical

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • most general causal linear relationship between electrical field and polarization field

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, \int \mathrm{d}^3 \boldsymbol{\xi} \, G_{ij}(\tau, \boldsymbol{\xi}) \, E_j(t - \tau, \boldsymbol{x} - \boldsymbol{\xi})$$

Fourier transform

$$\tilde{P}_{i}(\omega, \boldsymbol{q}) = \epsilon_{0} \chi_{ij}(\omega, \boldsymbol{q}) \tilde{E}_{j}(\omega, \boldsymbol{q})$$
$$\tilde{D}_{i} = \epsilon_{0} \tilde{E}_{i} + \tilde{P}_{i}$$

•
$$\tilde{D}_i = \epsilon_0 \, \epsilon_{ij} \tilde{E}_i$$

• $\epsilon_{ij}(\omega, \boldsymbol{q}) = \delta i j + \chi_{ij}(\omega, \boldsymbol{q})$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peter Hertel

Optical Activity

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • most general causal linear relationship between electrical field and polarization field

$$P_i(t, \boldsymbol{x}) = \epsilon_0 \int_0^\infty \mathrm{d}\tau \, \int \mathrm{d}^3 \boldsymbol{\xi} \, G_{ij}(\tau, \boldsymbol{\xi}) \, E_j(t - \tau, \boldsymbol{x} - \boldsymbol{\xi})$$

$$\tilde{P}_{i}(\omega, \boldsymbol{q}) = \epsilon_{0} \chi_{ij}(\omega, \boldsymbol{q}) \tilde{E}_{j}(\omega, \boldsymbol{q})$$
$$\tilde{D} = \epsilon_{0} \tilde{E} + \tilde{D}$$

•
$$D_i = \epsilon_0 E_i + P_i$$

•
$$\tilde{D}_i = \epsilon_0 \, \epsilon_{ij} \tilde{E}_i$$

- $\epsilon_{ij}(\omega, q) = \delta i j + \chi_{ij}(\omega, q)$
- in general, permittivity ϵ_{ij} depends on angular frequency ω and wave vector ${m q}$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Local interaction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Local interaction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- dispersion relation of photons is $\omega=cq/n$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Local interaction

- dispersion relation of photons is $\omega=cq/n$
- dispersion relation of phonons is $\omega = vq$

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

Local interaction

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- dispersion relation of photons is $\omega=cq/n$
- dispersion relation of phonons is $\omega = vq$
- where v is speed of sound

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

Local interaction

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- dispersion relation of photons is $\omega=cq/n$
- dispersion relation of phonons is $\omega = vq$
- where v is speed of sound
- acoustical and optical phonons

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

Local interaction

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- dispersion relation of photons is $\omega=cq/n$
- dispersion relation of phonons is $\omega = vq$
- where v is speed of sound
- acoustical and optical phonons
- photon and phonon dispersion relations intersect for optical phonons

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

Local interaction

- dispersion relation of photons is $\omega=cq/n$
- dispersion relation of phonons is $\omega=vq$
- where v is speed of sound
- acoustical and optical phonons
- photon and phonon dispersion relations intersect for optical phonons
- $v/c \approx 0.01$, q is small

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

Local interaction

- dispersion relation of photons is $\omega=cq/n$
- dispersion relation of phonons is $\omega = vq$
- where v is speed of sound
- acoustical and optical phonons
- photon and phonon dispersion relations intersect for optical phonons
- $v/c \approx 0.01$, q is small
- $\epsilon_{ij}(\omega, \boldsymbol{q}) \approx \epsilon_{ij}(\omega, 0)$

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

Local interaction

- dispersion relation of photons is $\omega=cq/n$
- dispersion relation of phonons is $\omega = vq$
- where v is speed of sound
- acoustical and optical phonons
- photon and phonon dispersion relations intersect for optical phonons
- $v/c \approx 0.01$, q is small
- $\epsilon_{ij}(\omega, \boldsymbol{q}) \approx \epsilon_{ij}(\omega, 0)$
- normally, the permittivity depends on ω only

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

Local interaction

- dispersion relation of photons is $\omega=cq/n$
- dispersion relation of phonons is $\omega = vq$
- where v is speed of sound
- acoustical and optical phonons
- photon and phonon dispersion relations intersect for optical phonons
- $v/c \approx 0.01$, q is small
- $\epsilon_{ij}(\omega, \boldsymbol{q}) \approx \epsilon_{ij}(\omega, 0)$
- normally, the permittivity depends on $\boldsymbol{\omega}$ only
- $G_{ij}(\tau, \boldsymbol{\xi}) \approx G_{ij}(\tau) \ \delta^3(\boldsymbol{\xi})$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Drude model

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

• Locality is built into the Drude model

Drude model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Drude model

- Locality is built into the Drude model
- We investigate matter at location $oldsymbol{x}=0$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Roadmap

Optical Activity

Peter Hertel

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

- Locality is built into the Drude model
- We investigate matter at location $oldsymbol{x}=0$
- deviation of a charged particle from this position is $\pmb{x}=\pmb{x}(t)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peter Hertel

Optical Activity

Permittivity

- No extern fields
- External electric field
- External magnetic field
- Optical activity

- Locality is built into the Drude model
- We investigate matter at location $oldsymbol{x}=0$
- deviation of a charged particle from this position is $\pmb{x}=\pmb{x}(t)$
- equation of motion

$$m \{ \ddot{\boldsymbol{x}}(t) + \Gamma \dot{\boldsymbol{x}}(t) + \Omega^2 \boldsymbol{x}(t) \} = q \boldsymbol{E}(t, \boldsymbol{x}(t))$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Roadmap

Optical Activity

Peter Hertel

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

- Locality is built into the Drude model
- We investigate matter at location $oldsymbol{x}=0$
- deviation of a charged particle from this position is $\pmb{x}=\pmb{x}(t)$
- equation of motion

$$m \left\{ \, \ddot{\boldsymbol{x}}(t) + \Gamma \dot{\boldsymbol{x}}(t) + \Omega^2 \boldsymbol{x}(t) \, \right\} = q \, \boldsymbol{E}(t, \boldsymbol{x}(t))$$

- right hand side approximated by $\boldsymbol{E}(t,0)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Optical Activity

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

- Locality is built into the Drude model
- We investigate matter at location $oldsymbol{x}=0$
- deviation of a charged particle from this position is $\pmb{x}=\pmb{x}(t)$
- equation of motion

$$m \left\{ \ \ddot{\boldsymbol{x}}(t) + \Gamma \dot{\boldsymbol{x}}(t) + \Omega^2 \boldsymbol{x}(t) \ \right\} = q \ \boldsymbol{E}(t, \boldsymbol{x}(t))$$

- right hand side approximated by $\pmb{E}(t,0)$
- electromagnetic waves are long

Drude model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Optical Activity

Peter Hertel

Roadmap

Permittivity

- No externa fields
- External electric field
- External magnetic field
- Optical activity

- Locality is built into the Drude model
- We investigate matter at location $oldsymbol{x}=0$
- deviation of a charged particle from this position is $\pmb{x}=\pmb{x}(t)$
- equation of motion

$$m \left\{ ~ \ddot{\boldsymbol{x}}(t) + \Gamma \dot{\boldsymbol{x}}(t) + \Omega^2 \boldsymbol{x}(t) ~ \right\} = q ~ \boldsymbol{E}(t, \boldsymbol{x}(t))$$

- right hand side approximated by $\pmb{E}(t,0)$
- electromagnetic waves are long
- involved wave vectors are small

Drude model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

- Locality is built into the Drude model
- We investigate matter at location $oldsymbol{x}=0$
- deviation of a charged particle from this position is $\pmb{x}=\pmb{x}(t)$
- equation of motion

$$m \left\{ \ \ddot{\boldsymbol{x}}(t) + \Gamma \dot{\boldsymbol{x}}(t) + \Omega^2 \boldsymbol{x}(t) \ \right\} = q \ \boldsymbol{E}(t, \boldsymbol{x}(t))$$

- right hand side approximated by $\pmb{E}(t,0)$
- electromagnetic waves are long
- involved wave vectors are small
- good so, because otherwise solving equation of motion by Fourier transforming it would be impossible

Drude model

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

- Locality is built into the Drude model
- We investigate matter at location $oldsymbol{x}=0$
- deviation of a charged particle from this position is $\pmb{x}=\pmb{x}(t)$
- equation of motion

$$m \left\{ \ \ddot{\boldsymbol{x}}(t) + \Gamma \dot{\boldsymbol{x}}(t) + \Omega^2 \boldsymbol{x}(t) \ \right\} = q \ \boldsymbol{E}(t, \boldsymbol{x}(t))$$

- right hand side approximated by $\pmb{E}(t,0)$
- electromagnetic waves are long
- involved wave vectors are small
- good so, because otherwise solving equation of motion by Fourier transforming it would be impossible
- at least difficult

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• no external electric or magnetic field

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

• no external electric or magnetic field

```
• Onsager: \epsilon_{ij} = \epsilon_{ji}
```

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- no external electric or magnetic field
- Onsager: $\epsilon_{ij} = \epsilon_{ji}$
- negligible absorption: $\epsilon_{ij} = \epsilon^*_{ji}$

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

- no external electric or magnetic field
- Onsager: $\epsilon_{ij} = \epsilon_{ji}$
- negligible absorption: $\epsilon_{ij} = \epsilon^*_{ji}$
- permittivity is a real symmetric tensor

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

- no external electric or magnetic field
- Onsager: $\epsilon_{ij} = \epsilon_{ji}$
- negligible absorption: $\epsilon_{ij} = \epsilon^*_{ji}$
- permittivity is a real symmetric tensor
- can be orthogonally diagonalzed

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

- no external electric or magnetic field
- Onsager: $\epsilon_{ij} = \epsilon_{ji}$
- negligible absorption: $\epsilon_{ij} = \epsilon^*_{ji}$
- permittivity is a real symmetric tensor
- can be orthogonally diagonalzed
- optically isotropic : $\epsilon_{ij} = n^2 \delta_{ij}$

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

- no external electric or magnetic field
- Onsager: $\epsilon_{ij} = \epsilon_{ji}$
- negligible absorption: $\epsilon_{ij} = \epsilon^*_{ji}$
- permittivity is a real symmetric tensor
- can be orthogonally diagonalzed
- optically isotropic : $\epsilon_{ij} = n^2 \delta_{ij}$
- optically uniaxial

$$\epsilon_{ij} = \left(\begin{array}{ccc} n_{\rm o}^2 & 0 & 0 \\ 0 & n_{\rm o}^2 & 0 \\ 0 & 0 & n_{\rm e}^2 \end{array} \right)$$

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

- no external electric or magnetic field
- Onsager: $\epsilon_{ij} = \epsilon_{ji}$
- negligible absorption: $\epsilon_{ij} = \epsilon^*_{ji}$
- permittivity is a real symmetric tensor
- can be orthogonally diagonalzed
- optically isotropic : $\epsilon_{ij} = n^2 \delta_{ij}$
- optically uniaxial

$$\epsilon_{ij} = \left(\begin{array}{ccc} n_{\rm o}^2 & 0 & 0 \\ 0 & n_{\rm o}^2 & 0 \\ 0 & 0 & n_{\rm e}^2 \end{array} \right)$$

• ordinary beam : $\hat{\boldsymbol{e}} = \cos \alpha \hat{\boldsymbol{x}} + \sin \alpha \hat{\boldsymbol{y}}$ and $\hat{\boldsymbol{k}} = \hat{\boldsymbol{z}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Isotropic and birefringent media

- no external electric or magnetic field
- Onsager: $\epsilon_{ij} = \epsilon_{ji}$
- negligible absorption: $\epsilon_{ij} = \epsilon^*_{ji}$
- permittivity is a real symmetric tensor
- can be orthogonally diagonalzed
- optically isotropic : $\epsilon_{ij} = n^2 \delta_{ij}$
- optically uniaxial

$$\epsilon_{ij} = \left(\begin{array}{ccc} n_{\rm o}^2 & 0 & 0 \\ 0 & n_{\rm o}^2 & 0 \\ 0 & 0 & n_{\rm e}^2 \end{array} \right)$$

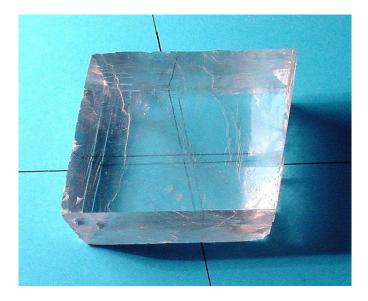
• ordinary beam : $\hat{\boldsymbol{e}} = \cos \alpha \hat{\boldsymbol{x}} + \sin \alpha \hat{\boldsymbol{y}}$ and $\hat{\boldsymbol{k}} = \hat{\boldsymbol{z}}$

• extraordinary : $\hat{k} = \cos \alpha \hat{x} + \sin \alpha \hat{y}$ and $\hat{e} = \hat{z}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Peter Hertel

Roadmap


Permittivity

No external fields

External electric field

External magnetic field

Optical activity

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

э

Double refraction (birefringence) by calcite

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Pockels effect

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Pockels effect

•
$$\epsilon_{ij} = n_{ij}^2 + R_{ijk}\mathcal{E}_k$$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Pockels effect

•
$$\epsilon_{ij} = n_{ij}^2 + R_{ijk}\mathcal{E}_k$$

•
$$R_{ijk} = R_{jik}$$

• $\epsilon_{ij} = n_{ij}^2 + R_{ijk}\mathcal{E}_k$

•
$$R_{ijk} = R_{jik}$$

 such a tensor with three indexes <u>not</u> allowed for crystals with inversion symmetry

Optical Activity

Peter Hertel

Roadmap

- Permittivity
- No externa fields

External electric field

External magnetic field

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• $\epsilon_{ij} = n_{ij}^2 + R_{ijk}\mathcal{E}_k$

•
$$R_{ijk} = R_{jik}$$

- such a tensor with three indexes <u>not</u> allowed for crystals with inversion symmetry
- but for instance in lithium niobate (3m symmetry)

No exter

External electric field

Optical Activity

Peter Hertel

External magnetic field

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• $\epsilon_{ij} = n_{ij}^2 + R_{ijk}\mathcal{E}_k$

•
$$R_{ijk} = R_{jik}$$

- such a tensor with three indexes <u>not</u> allowed for crystals with inversion symmetry
- but for instance in lithium niobate (3m symmetry)
- Pockels effect causes additional birefringence

Optical Activity

Peter Hertel

Roadmap

- Permittivity
- No externa fields

External electric field

External magnetic field

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• $\epsilon_{ij} = n_{ij}^2 + R_{ijk}\mathcal{E}_k$

•
$$R_{ijk} = R_{jik}$$

- such a tensor with three indexes <u>not</u> allowed for crystals with inversion symmetry
- but for instance in lithium niobate (3m symmetry)
- Pockels effect causes additional birefringence
- ..., which is proportional to the external field strength ${m {\cal E}}$

No extern fields

Optical Activity

Peter Hertel

External electric field

External magnetic field

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• $\epsilon_{ij} = n_{ij}^2 + R_{ijk}\mathcal{E}_k$

•
$$R_{ijk} = R_{jik}$$

- such a tensor with three indexes <u>not</u> allowed for crystals with inversion symmetry
- but for instance in lithium niobate (3m symmetry)
- Pockels effect causes additional birefringence ...
- ... which is proportional to the external field strength ${m {\cal E}}$
- effect is fast (GHz), but requires large field strength

Optical Activity

Peter Hertel

Roadmap

- Permittivity
- No externa fields

External electric field

External magnetic field

• $\epsilon_{ij} = n_{ij}^2 + R_{ijk}\mathcal{E}_k$

•
$$R_{ijk} = R_{jik}$$

- such a tensor with three indexes <u>not</u> allowed for crystals with inversion symmetry
- but for instance in lithium niobate (3m symmetry)
- Pockels effect causes additional birefringence
- ... which is proportional to the external field strength ${m {\cal E}}$
- effect is fast (GHz), but requires large field strength
- therefore µm-optics (Integrated Optics)

Optical Activity

Peter Hertel

Roadmap

- Permittivity
- No externa fields

External electric field

External magnetic field

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

A commercial Pockels cell for modulating light

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Faraday effect

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Faraday effect

(ロ)、

•
$$\epsilon_{ij} = n_{ij}^2 + iK\epsilon_{ijk}\mathcal{B}_k$$

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • $\epsilon_{ij} = n_{ij}^2 + iK\epsilon_{ijk}\mathcal{B}_k$

• rotation of polarization proportional to the magnetic induction

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

- $\epsilon_{ij} = n_{ij}^2 + i K \epsilon_{ijk} \mathcal{B}_k$
- rotation of polarization proportional to the magnetic induction
- effect is non-reciprocal

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Activity Peter Hertel

Optical

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

- $\epsilon_{ij} = n_{ij}^2 + iK\epsilon_{ijk}\mathcal{B}_k$
- rotation of polarization proportional to the magnetic induction
- effect is non-reciprocal
- optical isolator for protecting lasers from their own light

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Roadmap

Optical Activity

Peter Hertel

Permittivity

No externa fields

External electric field

External magnetic field

- $\epsilon_{ij} = n_{ij}^2 + iK\epsilon_{ijk}\mathcal{B}_k$
- rotation of polarization proportional to the magnetic induction
- effect is non-reciprocal
- optical isolator for protecting lasers from their own light
- best with ferro- or ferri-magnetic media, like yttrium iron garnet etc.

Roadmap

Optical Activity

Peter Hertel

Permittivity

No externa fields

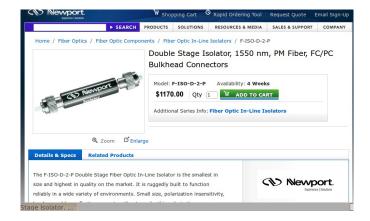
External electric field

External magnetic field

- $\epsilon_{ij} = n_{ij}^2 + iK\epsilon_{ijk}\mathcal{B}_k$
- rotation of polarization proportional to the magnetic induction
- effect is non-reciprocal
- optical isolator for protecting lasers from their own light
- best with ferro- or ferri-magnetic media, like yttrium iron garnet etc.
- goal: realize the optical isolator in μ m-optics

Peter Hertel

Roadmap


Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A commercial optical isolator

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity

(ロ)、

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity

(ロ)、

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

I found this in the internet when looking for optical activity.

・ロト ・聞ト ・ヨト ・ヨト

э

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity

(ロ)、

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity

(ロ)、

• recall
$$\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• recall
$$\epsilon_{ij} = \epsilon_{ij}(\omega, q)$$

• Invariance with respect to time reversal:

$$G_{ij}(\tau, \boldsymbol{\xi}) = G_{ji}(\tau, -\boldsymbol{\xi})$$

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$
- Invariance with respect to time reversal: $G_{ij}(\tau,\pmb{\xi})=G_{ji}(\tau,-\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, oldsymbol{q}) = \epsilon_{ji}(\omega, -oldsymbol{q})$

Activity Peter Hertel

Optical

- Roadmap
- Permittivity
- No externa fields
- External electric field
- External magnetic field
- Optical activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, q)$
- Invariance with respect to time reversal: $G_{ij}(\tau,\pmb{\xi})=G_{ji}(\tau,-\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, {m q}) = \epsilon_{ji}(\omega, -{m q})$
- if present, a magnetic field must be inverted as well

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$
- Invariance with respect to time reversal: $G_{ij}(\tau, \pmb{\xi}) = G_{ji}(\tau, -\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, oldsymbol{q}) = \epsilon_{ji}(\omega, -oldsymbol{q})$
- if present, a magnetic field must be inverted as well
- recall that ϵ_{ij} is also hermitian: $\epsilon_{ij} = \epsilon^*_{ji}$

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$
- Invariance with respect to time reversal: $G_{ij}(\tau, \pmb{\xi}) = G_{ji}(\tau, -\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, oldsymbol{q}) = \epsilon_{ji}(\omega, -oldsymbol{q})$
- if present, a magnetic field must be inverted as well
- recall that ϵ_{ij} is also hermitian: $\epsilon_{ij} = \epsilon^*_{ji}$
- up to first order in q:

Optical Activity

Peter Hertel

- Roadmap
- Permittivity
- No externa fields
- External electric field
- External magnetic field

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$
- Invariance with respect to time reversal: $G_{ij}(\tau, \pmb{\xi}) = G_{ji}(\tau, -\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, oldsymbol{q}) = \epsilon_{ji}(\omega, -oldsymbol{q})$
- if present, a magnetic field must be inverted as well
- recall that ϵ_{ij} is also hermitian: $\epsilon_{ij} = \epsilon^*_{ji}$
- up to first order in q:

•
$$\epsilon_{ij} = n_{ij}^2 + \chi_{ijk}^{\mathrm{oa}} q_k$$

Activity Peter Hertel

Optical

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$
- Invariance with respect to time reversal: $G_{ij}(\tau,\pmb{\xi})=G_{ji}(\tau,-\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, oldsymbol{q}) = \epsilon_{ji}(\omega, -oldsymbol{q})$
- if present, a magnetic field must be inverted as well
- recall that ϵ_{ij} is also hermitian: $\epsilon_{ij} = \epsilon^*_{ji}$
- up to first order in q:
- $\epsilon_{ij} = n_{ij}^2 + \chi_{ijk}^{\mathrm{oa}} q_k$
- χ^{oa}_{ijk} is purely imaginary and antisymmetric in the first two indexes

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$
- Invariance with respect to time reversal: $G_{ij}(\tau,\pmb{\xi})=G_{ji}(\tau,-\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, oldsymbol{q}) = \epsilon_{ji}(\omega, -oldsymbol{q})$
- if present, a magnetic field must be inverted as well
- recall that ϵ_{ij} is also hermitian: $\epsilon_{ij} = \epsilon_{ji}^*$
- up to first order in q:
- $\epsilon_{ij} = n_{ij}^2 + \chi_{ijk}^{\mathrm{oa}} q_k$
- χ^{oa}_{ijk} is purely imaginary and antisymmetric in the first two indexes

•
$$\Delta \epsilon_{ij}^{oa} = i \epsilon_{ijk} g_k$$
 with $g_k = G_{kl} q_l$

Optical Activity

Peter Hertel

- Roadmap
- Permittivity
- No externa fields
- External electric field
- External magnetic field

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$
- Invariance with respect to time reversal: $G_{ij}(\tau,\pmb{\xi})=G_{ji}(\tau,-\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, {m q}) = \epsilon_{ji}(\omega, -{m q})$
- if present, a magnetic field must be inverted as well
- recall that ϵ_{ij} is also hermitian: $\epsilon_{ij} = \epsilon^*_{ji}$
- up to first order in q:
- $\epsilon_{ij} = n_{ij}^2 + \chi_{ijk}^{\mathrm{oa}} q_k$
- χ^{oa}_{ijk} is purely imaginary and antisymmetric in the first two indexes
- $\Delta \epsilon_{ij}^{oa} = i \epsilon_{ijk} g_k$ with $g_k = G_{kl} q_l$
- gyration vector g_k depends linearly on the wave vector q_l

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

- recall $\epsilon_{ij} = \epsilon_{ij}(\omega, \boldsymbol{q})$
- Invariance with respect to time reversal: $G_{ij}(\tau,\pmb{\xi})=G_{ji}(\tau,-\pmb{\xi})$
- which implies $\epsilon_{ij}(\omega, {m q}) = \epsilon_{ji}(\omega, -{m q})$
- if present, a magnetic field must be inverted as well
- recall that ϵ_{ij} is also hermitian: $\epsilon_{ij} = \epsilon^*_{ji}$
- up to first order in q:
- $\epsilon_{ij} = n_{ij}^2 + \chi_{ijk}^{\mathrm{oa}} q_k$
- χ^{oa}_{ijk} is purely imaginary and antisymmetric in the first two indexes
- $\Delta \epsilon_{ij}^{oa} = i \epsilon_{ijk} g_k$ with $g_k = G_{kl} q_l$
- gyration vector g_k depends linearly on the wave vector q_l
- G_{kl} is a rank 2 pseudo-tensor

activity

Permittivity

Optical Activity

Peter Hertel

No externa fields

External electric field

External magnetic field

Optical

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Genuine and pseudo tensors

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Genuine and pseudo tensors

• Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Genuine and pseudo tensors

• Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change

•
$$x_i' = R_{ij} x_j$$
 where $R R^\dagger = R^\dagger R = I$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Genuine and pseudo tensors

• Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change

•
$$x_i' = R_{ij} x_j$$
 where $R R^{\dagger} = R^{\dagger} R = R$

• $\det RR^{\dagger} = (\det R)^2 = 1$

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Genuine and pseudo tensors

• Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change

•
$$x'_i = R_{ij}x_j$$
 where $RR^{\dagger} = R^{\dagger}R = I$

- $\det RR^{\dagger} = (\det R)^2 = 1$
- $\det R = +1$: proper rotation

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field
- Optical activity

Genuine and pseudo tensors

- Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change
- $x_i' = R_{ij} x_j$ where $R R^{\dagger} = R^{\dagger} R = I$
- $\det RR^{\dagger} = (\det R)^2 = 1$
- $\det R = +1$: proper rotation
- $\det R = -1$: space inverions and proper rotation

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field
- Optical activity

Genuine and pseudo tensors

- Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change
- $x_i' = R_{ij}x_j$ where $RR^{\dagger} = R^{\dagger}R = I$
- $\det RR^{\dagger} = (\det R)^2 = 1$
- $\det R = +1$: proper rotation
- $\det R = -1$: space inverions and proper rotation
- tensors $T_{ij...}$ transform as $T'_{ij...} = R_{im}R_{jn}\ldots T_{mn...}$

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

Genuine and pseudo tensors

- Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change
- $x_i' = R_{ij}x_j$ where $RR^{\dagger} = R^{\dagger}R = I$
- $\det RR^{\dagger} = (\det R)^2 = 1$
- $\det R = +1$: proper rotation
- $\det R = -1$: space inverions and proper rotation
- tensors $T_{ij...}$ transform as $T'_{ij...} = R_{im}R_{jn}\ldots T_{mn...}$
- they are called genuine tensors

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

Genuine and pseudo tensors

- Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change
- $x_i' = R_{ij} x_j$ where $R R^{\dagger} = R^{\dagger} R = I$
- $\det RR^{\dagger} = (\det R)^2 = 1$
- $\det R = +1$: proper rotation
- $\det R = -1$: space inverions and proper rotation
- tensors $T_{ij...}$ transform as $T'_{ij...} = R_{im}R_{jn}\ldots T_{mn...}$
- they are called genuine tensors
- pseudo tensors $P_{ij...}$ transform as $P'_{ij...} = (\det R) R_{im} R_{jn} \dots P_{mn...}$

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

Genuine and pseudo tensors

- Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change
- $x_i' = R_{ij} x_j$ where $R R^{\dagger} = R^{\dagger} R = I$
- $\det RR^{\dagger} = (\det R)^2 = 1$
- $\det R = +1$: proper rotation
- $\det R = -1$: space inverions and proper rotation
- tensors $T_{ij...}$ transform as $T'_{ij...} = R_{im}R_{jn}\ldots T_{mn...}$
- they are called genuine tensors
- pseudo tensors $P_{ij...}$ transform as $P'_{ij...} = (\det R) R_{im} R_{jn} \dots P_{mn...}$
- δ_{ij} is a genuine tensor of rank 2

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

Genuine and pseudo tensors

- Coordinate transformation $x \to x'$ such that $ds^2 = dx_1^2 + dx_2^2 + dx_3^2$ does not change
- $x_i' = R_{ij} x_j$ where $R R^{\dagger} = R^{\dagger} R = I$
- $\det RR^{\dagger} = (\det R)^2 = 1$
- $\det R = +1$: proper rotation
- $\det R = -1$: space inverions and proper rotation
- tensors $T_{ij...}$ transform as $T'_{ij...} = R_{im}R_{jn}\ldots T_{mn...}$
- they are called genuine tensors
- pseudo tensors $P_{ij...}$ transform as $P'_{ij...} = (\det R) R_{im} R_{jn} \dots P_{mn...}$
- δ_{ij} is a genuine tensor of rank 2
- ϵ_{ijk} is a pseudo tensor of rank 3

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$$
 with $g_k = G_{kl}q_l$

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

- $\Delta \chi_{ij}^{oa} = i \epsilon_{ijk} g_k$ with $g_k = G_{kl} q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2
- g must be a pseudo vector

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2
- g must be a pseudo vector
- q_i is a genuine vector

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2
- g must be a pseudo vector
- q_i is a genuine vector
- G_{kl} therefore is a rank 2 pseudo tensor

Peter Hertel

Roadmap

- Permittivity
- No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2
- g must be a pseudo vector
- q_i is a genuine vector
- G_{kl} therefore is a rank 2 pseudo tensor
- Only materials which have no mirror symmetry show optical activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2
- g must be a pseudo vector
- q_i is a genuine vector
- G_{kl} therefore is a rank 2 pseudo tensor
- Only materials which have no mirror symmetry show optical activity
- Material must distinguish between left and right handed

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2
- g must be a pseudo vector
- q_i is a genuine vector
- G_{kl} therefore is a rank 2 pseudo tensor
- Only materials which have no mirror symmetry show optical activity
- Material must distinguish between left and right handed
- dextrose, quartz, ...

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Optical activity (ctd.)

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2
- g must be a pseudo vector
- q_i is a genuine vector
- G_{kl} therefore is a rank 2 pseudo tensor
- Only materials which have no mirror symmetry show optical activity
- Material must distinguish between left and right handed
- dextrose, quartz, ...
- Optically active materials cause a rotation of the polarization proportional to the sample thickness

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

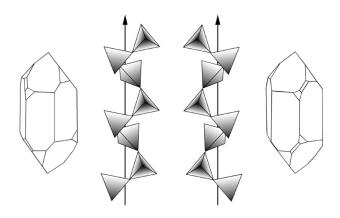
Optical activity

Optical activity (ctd.)

- $\Delta\chi^{oa}_{ij} = i\epsilon_{ijk}g_k$ with $g_k = G_{kl}q_l$
- \tilde{E}_i and \tilde{P}_i are genuine vectors
- hence susceptibility χ_{ij} is a genuine tensor of rank 2
- g must be a pseudo vector
- q_i is a genuine vector
- G_{kl} therefore is a rank 2 pseudo tensor
- Only materials which have no mirror symmetry show optical activity
- Material must distinguish between left and right handed
- dextrose, quartz, ...
- Optically active materials cause a rotation of the polarization proportional to the sample thickness
- The effect is reversible, as contrasted with the Faraday effect

Peter Hertel

Roadmap


Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

Right vs. left handed quartz crystals.

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Dextrose

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

• optical activity of sugar discovered by Seebeck in 1811

Dextrose

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • optical activity of sugar discovered by Seebeck in 1811

• this explains the name optical activity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • optical activity of sugar discovered by Seebeck in 1811

- this explains the name optical activity
- dextrose is naturally produced sugar

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • optical activity of sugar discovered by Seebeck in 1811

- this explains the name optical activity
- dextrose is naturally produced sugar
- glucose (sugar) from Greek $\gamma\lambda\nu\kappa\nu\varsigma$ =glycys=sweet

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Optical Activity

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity • optical activity of sugar discovered by Seebeck in 1811

- this explains the name optical activity
- dextrose is naturally produced sugar
- glucose (sugar) from Greek $\gamma\lambda\nu\kappa\nu\varsigma$ =glycys=sweet
- dextrose from Latin dexter=right

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Optical Activity

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

- optical activity of sugar discovered by Seebeck in 1811
- this explains the name optical activity
- dextrose is naturally produced sugar
- glucose (sugar) from Greek $\gamma\lambda\nu\kappa\nu\varsigma$ =glycys=sweet
- dextrose from Latin dexter=right
- artificially produced sugar does not show left/right-handedness

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Optical Activity

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

- optical activity of sugar discovered by Seebeck in 1811
- this explains the name optical activity
- dextrose is naturally produced sugar
- glucose (sugar) from Greek $\gamma\lambda\nu\kappa\nu\varsigma$ =glycys=sweet
- dextrose from Latin dexter=right
- artificially produced sugar does not show left/right-handedness
- biologically produces sugar (dextrose) is optically effective

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Optical Activity

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

- optical activity of sugar discovered by Seebeck in 1811
- this explains the name optical activity
- dextrose is naturally produced sugar
- glucose (sugar) from Greek $\gamma\lambda\upsilon\kappa\upsilon\varsigma=$ glycys=sweet
- dextrose from Latin dexter=right
- artificially produced sugar does not show left/right-handedness
- biologically produces sugar (dextrose) is optically effective
- Nature has no tendency to prefer left to right handedness

Optical Activity

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

- optical activity of sugar discovered by Seebeck in 1811
- this explains the name optical activity
- dextrose is naturally produced sugar
- glucose (sugar) from Greek $\gamma\lambda\upsilon\kappa\upsilon\varsigma=$ glycys=sweet
- dextrose from Latin dexter=right
- artificially produced sugar does not show left/right-handedness
- biologically produces sugar (dextrose) is optically effective
- Nature has no tendency to prefer left to right handedness
- Question: Are all sugar producing plants copies of the first plant, which randomly decided between left and right?

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Thomas Seebeck, German physicist, 1770-1831

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

Quartz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

• Quartz is silicon dioxide, SiO_2

Quartz

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Peter Hertel

Roadmap

Permittivity

No external fields

External electric field

External magnetic field

Optical activity

• Quartz is silicon dioxide, SiO_2

• the most common mineral on earth

Quartz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

• Quartz is silicon dioxide, SiO₂

- the most common mineral on earth
- just think of sand

Quartz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field
- Optical activity

Quartz

- Quartz is silicon dioxide, SiO₂
- the most common mineral on earth
- just think of sand
- single crystals are either left or right optically active

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field
- Optical activity

Quartz

- Quartz is silicon dioxide, SiO₂
- the most common mineral on earth
- just think of sand
- single crystals are either left or right optically active
- however, twins are also found

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field
- Optical activity

• Quartz is silicon dioxide, SiO₂

- the most common mineral on earth
- just think of sand
- single crystals are either left or right optically active
- however, twins are also found
- world wide distribution is very close to 1:1 for left:right crystals

Quartz

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

- Quartz is silicon dioxide, SiO_2
- the most common mineral on earth
- just think of sand
- single crystals are either left or right optically active
- however, twins are also found
- world wide distribution is very close to 1:1 for left:right crystals
- there seems to be no preference of nature for left or right

Quartz

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

- Quartz is silicon dioxide, SiO_2
- the most common mineral on earth
- just think of sand
- single crystals are either left or right optically active
- however, twins are also found
- world wide distribution is very close to 1:1 for left:right crystals
- there seems to be no preference of nature for left or right
- although parity is not a symmetry of nature...

Quartz

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

- Quartz is silicon dioxide, SiO_2
- the most common mineral on earth
- just think of sand
- single crystals are either left or right optically active
- however, twins are also found
- world wide distribution is very close to 1:1 for left:right crystals
- there seems to be no preference of nature for left or right
- although parity is not a symmetry of nature...
- TCP is

Quartz

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

- Quartz is silicon dioxide, SiO_2
- the most common mineral on earth
- just think of sand
- single crystals are either left or right optically active
- however, twins are also found
- world wide distribution is very close to 1:1 for left:right crystals
- there seems to be no preference of nature for left or right
- although parity is not a symmetry of nature...
- TCP is
- P alone not

Quartz

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peter Hertel

Roadmap

- Permittivity
- No externa fields
- External electric field
- External magnetic field

Optical activity

- Quartz is silicon dioxide, SiO_2
- the most common mineral on earth
- just think of sand
- single crystals are either left or right optically active
- however, twins are also found
- world wide distribution is very close to 1:1 for left:right crystals
- there seems to be no preference of nature for left or right
- although parity is not a symmetry of nature...
- TCP is
- P alone not
- but only in weak interactions

Quartz

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peter Hertel

Roadmap

Permittivity

No externa fields

External electric field

External magnetic field

Optical activity

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

Natural quartz