
TM modes on metal surfaces
We consider a plane interface between a dielectric cover, air say, and a good conductor,
such as gold. The classical free electron gas model results in a permittivity the real
part of which, well below the plasma resonance frequency, is large and negative. We
show that there is at most one TM polarized surface mode, but no TE counterpart. Any
medium the permittivity of which has a large negative real and a small imaginary part
behaves like this, the underlying mechanism must not be surface plasmon polaritons.

The Drude model
An external electric field E will exert the following force on an electron at x:

mẍ = −mγẋ−mΩ2x− eE(t) . (1)

m and −e are its mass and charge, x denotes the displacement from the equilibrium
position. γ describes friction and mΩ2 is the spring constant.

We Fourier transform this equation and obtain

(−ω2 − iγω + Ω2) x̂(ω) = − e

m
Ê(ω) . (2)

If there are N such electrons per unit volume, the polarization is

P̂ (ω) =
Ne2

m

1

−ω2 − iγω + Ω2
Ê(ω) . (3)

The relative permittivity, as defined by D̂(ω) = ε(ω) ε0 Ê(ω), thus is given by

ε(ω) = ε∞ −
ω2

p

ω2 + iγω − Ω2
where ω2

p =
Ne2

mε0
. (4)

The free electron gas is characterized by Ω = 0: there is no elastic binding force.
ωp then is the plasma resonance frequency. In order to take other contributions into
account, the one in (4) was changed to ε∞.

Maxwell equations and surface modes
We denote by x the coordinate perpendicular to the plane. x > 0 describes the cover
(subscript c), x < 0 the metal (subscript m). Without loss of generality the direction
of propagation can be chosen as the z axis. All components F of the electromagnetic
field E, H are of the form1

F (t, x, y, z) = F (x) e iβz e−iωt
. (5)

ω is the angular frequency of light and β denotes the propagation constants.
Maxwell’s equations for vanishing charges and currents and for a non-magnetic

medium read

∇×H = −iωε0εE and ∇×E = iωµ0H , (6)

in usual notation. ε = ε(x) is the relative permittivity. Note that both divergence
equations are automatically satisfied for ω 6= 0.

1We use the same symbol for a field and the corresponding mode amplitude.
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A TE mode is specified by

E =

 0

E

0

 and H =
−1

ωµ0

 βE

0

iE ′

 , (7)

a TM mode by

H =

 0

H

0

 and εE =
1

ωε0

 βH

0

iH ′

 . (8)

Generally εEx must be continuous as well as Ey , Ez , Hx, Hy , and Hz . In the case
of a TE mode, E as well as E ′ must be continuous functions. For a TM mode, H and
H ′/ε have to be continuous.

TM mode
Generally, the magnetic field strength obeys the second order equation

∇× 1

ε
∇×H = k20H , (9)

with ε0µ0c
2 = 1 and ω = k0c. For a TM surface mode this boils down to{

ε(x)
d

dx
1

ε(x)

d
dx

+ k20 ε(x)

}
H = β2H . (10)

For a piecewise constant permittivity profile, (10) simplifies to

H ′′ + k20 ε(x)H = β2H . (11)

Let us define2

κc = +
√
β2 − k20εc . (12)

Hence, the solution of (11) in the cover region is

H(x) = e−κcx , (13)

which vanishes with x→∞.
We likewise define

H(x) = e +κmx (14)

within the metall, where

κm = +
√
β2 − k20εm . (15)

With our convention for the square root, (14) will vanish with x→ −∞.
Moreover, the magnetic field ist continuous at x = 0. In order for H ′(x)/ε(x) to

be continuous there we require

−κc

εc
=
κm

εm
. (16)

2We choose the square root of a complex number such that its real part is positive.
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Squaring this expression yields

β2 = k20
εm εc

εm + εc
. (17)

An ideal medium would have a large negative real permittivity. Then, β2 is positive,
and an undamped TM mode will propagate at the interface. For a small imaginary
contribution to the metal permittivity, a propagation constant β will result with only a
small imaginary contribution. The corresponding TM mode will be weakly damped.
Note that there is at most one solution to (16).

For a piecewise constant permittivity the TE mode equation is the same as (11),
with H replaced by E. Also the solution is the same. However, this time the field E
and its derivative E ′ must be continuous. Therefore, (16) has to be replaced by

−κc = κm . (18)

Squaring this implies ε2c = ε2m, hence κc = κm = 0. There is no TE polarized surface
mode. This finding holds true for any material on both sides of the interface.

Permittivity for gold
Johnson and Christy have investigated the optical properties of the noble metals3,
among them gold. ε∞ in (4) has the value 9.5. The plasma resonance frequency is
described by h̄ωp = 8.95 eV, friction by h̄γ = 0.069 eV. We have plotted the corre-
sponding dispersion curve in Figure 1. The free electron gas model fits data well for
wavelengths below 2.25 eV.
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Figure 1: Permittivity of gold according to the free electron gas
model. The real part (lower curve) and the imaginary part (upper
curve) are plotted versus photon energy in eV. The model fits ex-
perimental data well for photon energies below 2.25 eV (vertical
line).

3P. B. Johnson and R. W. Christy, Optical constants of the noble metals, Phys.Rev.B (1972), 4370

3



An example
We calculate the TM surface mode for h̄ω = 2.25 eV. The propagation length ` is
defined by 2` Imβ = 1. Data are collected in Table 1.

h̄ω 2.25 eV
k0 11.40 µm−1

λ 0.5513 µm
εc 1.000
εm -6.308+0.4848 i
β 12.42+0.08925 i µm−1

κc 4.931+0.2247 i µm−1

κm 31.21-0.9730 i µm−1

` 5.602 µm

Table 1: The TM polarized mode at the surface of gold for light
of h̄ω = 2.25 eV. See the text for the meaning of the symbols.

The shape of the mode is plotted in Figure 2.
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Figure 2: Gold (shaded) is covered by air. The intensity of the
TM surface mode corresponding to the above data is plotted vs.
the distance (in µm) from the surface. The mode penetrates
about 20 nm into the metal.
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