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We shall study next
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Causal functions

» x = x(w) is the Fourier transform of a causal function
namely of f(t)=0(t)I (t)
which therefore may be written as f(t) = 0(t)f(t)
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Kramers-Kronig relations

» The subsceptibility is related with itself:

~ [du x(u) 1 du x(u)
x(w) = 27re—i(w—u)_27ri/u—w—i6

Split into real and imaginary part: x = x' + ix”

recall that  is the Fourier transform of a real function
X(w) = x"(-w)

This boils down to

Vi(w) =2 /OOO gy X

T u? — w?
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» principal value integral understood
> note that only positive (angular) frequencies are involved
» x” describes absorption. Why must it be positive?
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> A(t) = U_tAU; is a process
» note that <A(t)> does not vary with time
» Define the correlation function for two processes

<A(t+7)B(t)+ B(t)A(t + 1) >

> — <A><B>

K(A,B;7) =

> note that time t does not appear on the left hand side

> note that the correlation function K = K(A, B; 7) is real if A
and B are observables

» K(A, A;7) is called an auto-correlation function
» K(A, B,0) describes the correlation between A and B
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» Let us insert Fourier-transforms
d —j ~
Alt+7) =<A> +/2we W) 2
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B(t) =<B> +/2weMtBT(w’)
T

» There will be a dependency on t unless

<AW)Bt(w") + B (w")A(w) > = 276(w — w') S(w)

2
» With this spectral density we may write
dw i
K(AB;7) = | e '“TS(A,B;w)
27
» The Wiener Khinchin theorem says
K(AA;T) = ;’i" e T S(A A w)
w

with S(AA;w) >0
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Kubo-Martin-Schwinger formula

Define

v

Alz)=e _’TIZHA e 7z

v

Both the Gibbs state as well as the waiting operator are
exponentials of the energy H

We work out

A(z)eiﬁH = eiﬁHeBHA(z)eiﬁH

v

i.e. A(z)G = GA(z — ihp)

Multiply with B from the right and apply the trace
KMS formula < BA(z) >=<A(z — ih3)B>

where 8 = 1/kBT

vV v . v.Y
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» Compare _
[(AB;T) =< é[A(T), B]>
> with
A(T)B + BA
K(AB; ) — ~AT) ; (> _ _as<B>
» Define f(7) =<A(7)B> — <A><B>

v

This function can be continued uniquely into the complex
plane

v

Applying the KMS formula yields
<BA(T)> — <A><B>=f(1 — ihf)

v



Fluctuation-Dissipation theorem

» Response function can be written as

(AB;7) = +{f(r) ~ F(r — ihB)



Fluctuation-Dissipation theorem

» Response function can be written as
[(AB;T) = 3{f(r) = f(7 — ihB}
» Time correlation function is

K(AB:7) = %{f(f) +f(r— ihB)}



Fluctuation-Dissipation theorem

» Response function can be written as

(AB;7) = +{f(r) ~ F(r — ihB)
» Time correlation function is

K(AB;7) = 2{f(r) + f(r — ih)}
» Generalized susceptibility

'y(AB;w)—/ dre'“T(AB;7)
0



Fluctuation-Dissipation theorem

» Response function can be written as

(AB;7) = +{f(r) ~ F(r — ihB)
» Time correlation function is

K(AB;7) = 2{f(r) + f(r — ih)}
» Generalized susceptibility

'y(AB;w)—/ dre'“T(AB;7)
0

» Fluctuation-Dissipation theorem of Callen and Welton

GEL) ;.V(BA;M) = S(A, B;w)%tanh @
1




Fluctuation-Dissipation theorem

» Response function can be written as

(AB;7) = +{f(r) ~ F(r — ihB)
» Time correlation function is

K(AB;7) = 2{f(r) + f(r — ih)}
» Generalized susceptibility

'y(AB;w)—/ dre'“T(AB;7)
0

» Fluctuation-Dissipation theorem of Callen and Welton

GEL) ;.V(BA;M) = S(A, B;w)%tanh @
1

» particularly interesting for A= B
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