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Recall

I Pi (t, x) =
∑

j

∫
dτ

∫
d3ξ θ(τ)Γiju, ξ)Ej(t − τ, x− ξ)

I P̂i (ω,q) = ε0
∑

j χij(ω,q)Êj(ω,q)

I The susceptibility is given by

χij(ω,q) =
1

ε0

∫
dτ e

iωτ
θ(τ)

∫
d3ξ e

−iq · ξ
Γij(τ, ξ)

I Let’s concentrate on time

I Introduce

Γij(τ,q) =

∫
d3ξ e

−iq · ξ
Γij(τ, ξ)

I Drop indexes i , j and the wave-vector q and forget about ε0
I We shall study next

χ(ω) =

∫
dτ e

iωτ
θ(τ) Γ(τ)
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Causal functions

I χ = χ(ω) is the Fourier transform of a causal function

I namely of f(t)=θ(t)Γ(t)

I which therefore may be written as f (t) = θ(t)f (t)

I hence, according to the convolution theorem:

f̂ (ω) =

∫
du

2π
θ̂(ω − u)f̂ (u)

I With ε > 0, ε→ 0 the Fourier transform of θ is

θ̂(ω) =
1

ε− iω

I Hence

χ(ω) =

∫
du

2π

χ(u)

ε− i(ω − u)
=

1

2πi

∫
du χ(u)

u − ω + iε
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Kramers-Kronig relations

I The subsceptibility is related with itself:

χ(ω) =

∫
du

2π

χ(u)

ε− i(ω − u)
=

1

2πi

∫
du χ(u)

u − ω − iε

I Split into real and imaginary part: χ = χ ′ + iχ ′′

I recall that χ is the Fourier transform of a real function

I χ(ω) = χ∗(−ω)

I This boils down to

χ ′(ω) =
2

π

∫ ∞
0

du
u χ ′′(u)

u2 − ω2

I principal value integral understood

I note that only positive (angular) frequencies are involved

I χ ′′ describes absorption. Why must it be positive?
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Wiener-Khintchin theorem

I A(t) = U−tAUt is a process

I note that <A(t)> does not vary with time

I Define the correlation function for two processes

K (A,B; τ) =
<A(t + τ)B(t) + B(t)A(t + τ)>

2
− <A><B>

I note that time t does not appear on the left hand side

I note that the correlation function K = K (A,B; τ) is real if A
and B are observables

I K (A,A; τ) is called an auto-correlation function

I K (A,B, 0) describes the correlation between A and B
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Wiener-Khintchin theorem (ctd)
I Let us insert Fourier-transforms

A(t + τ) =<A> +

∫
dω

2π
e
−iω(t + τ)

Â(ω)

B(t) =<B> +

∫
dω ′

2π
e

iω ′t
B̂†(ω ′)

I There will be a dependency on t unless

< Â(ω)B̂†(ω ′) + B̂†(ω ′)Â(ω)>

2
= 2πδ(ω − ω ′) S(ω)

I With this spectral density we may write

K (AB; τ) =

∫
dω

2π
e
−iωτ

S(A,B;ω)

I The Wiener Khinchin theorem says

K (AA; τ) =

∫
dω

2π
e
−iωτ

S(A,A;ω)

with S(AA;ω) ≥ 0
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2
= 2πδ(ω − ω ′) S(ω)

I With this spectral density we may write

K (AB; τ) =

∫
dω

2π
e
−iωτ

S(A,B;ω)

I The Wiener Khinchin theorem says

K (AA; τ) =

∫
dω

2π
e
−iωτ

S(A,A;ω)

with S(AA;ω) ≥ 0



Wiener-Khintchin theorem (ctd)
I Let us insert Fourier-transforms

A(t + τ) =<A> +

∫
dω

2π
e
−iω(t + τ)
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Kubo-Martin-Schwinger formula

I Define

A(z) = e
− i

~zH
A e

i
~zH

I Both the Gibbs state as well as the waiting operator are
exponentials of the energy H

I We work out

A(z) e
−βH

= e
−βH

e
βH

A(z) e
−βH

I i.e. A(z)G = GA(z − i~β)

I Multiply with B from the right and apply the trace

I KMS formula <BA(z)>=<A(z − i~β)B>

I where β = 1/kBT
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Response and Correlation

I Compare

Γ(AB; τ) =<
i

~
[A(τ),B]>

I with

K (AB; τ) =
<A(τ)B + BA(τ)>

2
− <A><B>

I Define f (τ) =<A(τ)B> − <A><B>

I This function can be continued uniquely into the complex
plane

I Applying the KMS formula yields

I <BA(τ)> − <A><B>= f (τ − i~β)
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Fluctuation-Dissipation theorem

I Response function can be written as

Γ(AB; τ) =
i

~
{f (τ)− f (τ − i~β}

I Time correlation function is

K (AB; τ) =
1

2
{f (τ) + f (τ − i~β)}

I Generalized susceptibility

γ(AB;ω) =

∫ ∞
0

dτ e
iωτ

Γ(AB; τ)

I Fluctuation-Dissipation theorem of Callen and Welton

γ(AB;ω)− γ(BA;ω)∗

2i
= S(A,B;ω)

1

~
tanh

β~ω
2

I particularly interesting for A = B
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