Past, Present and Future of the Expanding Universe

Peter Hertel University of Osnabrück, Germany

Talk presented at TEDA College on the occasion of its Tenth Anniversary

October 17, 2010

Peter Hertel Past, Present and Future of the Expanding Universe

- 4 同 6 4 回 6 4 回 6

Motto

Make things as simple as possible, but not simpler!

Peter Hertel Past, Present and Future of the Expanding Universe

< ロ > < 同 > < 回 > < 回 >

Э

Introduction

Peter Hertel Past, Present and Future of the Expanding Universe

Matter, Star	Normal matter
Univers	Stars
Cosmolog	Distances
Underway	Spectra
Normal matter	

• Consists of protons (p), neutrons (n), and electrons (e).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Matter, Stars	Normal matter
Universe	Stars
Cosmology	Distances
Underway	Spectra
Normal matter	

- $\bullet\,$ Consists of protons (p), neutrons (n), and electrons (e).
- There are also the massless neutrino ($\nu)$ and photon ($\gamma)$

- (同) - (目) - (目)

Matter, St Unive Cosmol Underv	Normal matter se Stars y Distances ay Spectra
Normal matter	

- \bullet Consists of protons (p), neutrons (n), and electrons (e).
- There are also the massless neutrino (u) and photon (γ)
- They form nuclei, atoms, molecules...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Matter, Stars	Normal matter
Universe	Stars
Cosmology	Distances
Underway	Spectra
Normal matter	

- Consists of protons (p), neutrons (n), and electrons (e).
- There are also the massless neutrino (u) and photon (γ)
- They form nuclei, atoms, molecules...
- and gases, liquids, solids...

イロト イポト イヨト イヨト

- 3

Matter, Stars	Normal matter
Universe	Stars
Cosmology	Distances
Underway	Spectra
Normal matter	

- Consists of protons (p), neutrons (n), and electrons (e).
- There are also the massless neutrino (ν) and photon (γ)
- They form nuclei, atoms, molecules...
- and gases, liquids, solids...
- planets, stars, galaxies and clusters of galaxies

イロト イポト イヨト イヨト

-

Matter, S	ars Normal matter
Univ	rse Stars
Cosmo	sp Distances
Under	vay Spectra
Nuclear fusion	

• Nuclear fusion, e. g. $(pn)+(pn) \rightarrow (ppnn)$

Mati Cc U	ter, Stars No Universe Sta osmology Dis Underway Spe	rmal matter rs tances ectra
Nuclear fusion		

- Nuclear fusion, e. g. (pn)+(pn) \rightarrow (ppnn)
- $\bullet \ i. \ e. \ D + D \rightarrow He$

٨	Aatter, Stars Universe Cosmology Underway	Normal matter Stars Distances Spectra
Nuclear fusion		

- Nuclear fusion, e. g. (pn)+(pn) \rightarrow (ppnn)
- $\bullet \ i. \ e. \ D + D \rightarrow He$
- Mass difference $\Delta M = M_D + M_D M_{He}$...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Matter, Stars	Normal matter
Universe	Stars
Cosmology	Distances
Underway	Spectra
Nuclear fusion	

- \bullet Nuclear fusion, e. g. (pn)+(pn) \rightarrow (ppnn)
- i. e. $D + D \rightarrow He$
- Mass difference $\Delta M = M_D + M_D M_{He}$...
- becomes energy $\Delta M \cdot c^2$ (radiation)

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Matter, Stars	Normal matter
Universe	Stars
Cosmology	Distances
Underway	Spectra
Nuclear fusion	

- \bullet Nuclear fusion, e. g. (pn)+(pn) \rightarrow (ppnn)
- i. e. $D + D \rightarrow He$
- Mass difference $\Delta M = M_D + M_D M_{He}$...
- becomes energy $\Delta M \cdot c^2$ (radiation)
- Many more nuclear fusion reactions

イロト 不得 とうせい かほとう ほ

	Matter, Stars Universe Cosmology Underway	Normal matter Stars Distances Spectra	
Stars			

• Because of universal gravitation, mass tends to accumulate

3

A ►

	Matter, Stars Universe Cosmology Underway	Normal matter Stars Distances Spectra	
Stars			

- Because of universal gravitation, mass tends to accumulate
- Implosion

-

Matta	r, Stars Normal matter
I	Jniverse Stars
Co	mology Distances
U	nderway Spectra
Stars	

- Because of universal gravitation, mass tends to accumulate
- Implosion
- Implosion may be stopped by counter pressure which compensates gravity

• (1) • (

	Matter, Stars Universe Cosmology Underway	Normal matter Stars Distances Spectra
Stars		

- Because of universal gravitation, mass tends to accumulate
- Implosion
- Implosion may be stopped by counter pressure which compensates gravity
- Nuclear fusion (hot gas and radiation pressure): normal stars

・ 同 ト ・ ヨ ト ・ ヨ ト

	Matter, Stars Universe Cosmology Underway	Normal matter Stars Distances Spectra
Stars		

- Because of universal gravitation, mass tends to accumulate
- Implosion
- Implosion may be stopped by counter pressure which compensates gravity
- Nuclear fusion (hot gas and radiation pressure): normal stars
- Electrons and neutrons are Fermions

Matter, Stars	Normal matter
Universe	Stars
Cosmology	Distances
Underway	Spectra
Underway	Spectra

- Because of universal gravitation, mass tends to accumulate
- Implosion
- Implosion may be stopped by counter pressure which compensates gravity
- Nuclear fusion (hot gas and radiation pressure): normal stars
- Electrons and neutrons are Fermions
- which, according to quantum theory, cannot occupy a state more than once (degeneration)

Matter, Stars	Normal matter	
Universe	Stars	
Cosmology	Distances	
Underway	Spectra	

- Because of universal gravitation, mass tends to accumulate
- Implosion
- Implosion may be stopped by counter pressure which compensates gravity
- Nuclear fusion (hot gas and radiation pressure): normal stars
- Electrons and neutrons are Fermions
- which, according to quantum theory, cannot occupy a state more than once (degeneration)
- Electron degeneration: white dwarfs (diameter of earth)

Normal matter	
Stars	
Distances	
Spectra	

- Because of universal gravitation, mass tends to accumulate
- Implosion
- Implosion may be stopped by counter pressure which compensates gravity
- Nuclear fusion (hot gas and radiation pressure): normal stars
- Electrons and neutrons are Fermions
- which, according to quantum theory, cannot occupy a state more than once (degeneration)
- Electron degeneration: white dwarfs (diameter of earth)
- Neutron degeneration: neutron stars (diameter 10 km)

Matter, Stars	Normal matter	
Universe	Stars	
Cosmology	Distances	
Underway	Spectra	

- Because of universal gravitation, mass tends to accumulate
- Implosion
- Implosion may be stopped by counter pressure which compensates gravity
- Nuclear fusion (hot gas and radiation pressure): normal stars
- Electrons and neutrons are Fermions
- which, according to quantum theory, cannot occupy a state more than once (degeneration)
- Electron degeneration: white dwarfs (diameter of earth)
- Neutron degeneration: neutron stars (diameter 10 km)
- If mass is too large: black holes

Normal matter	
Stars	
Distances	
Spectra	

- Because of universal gravitation, mass tends to accumulate
- Implosion
- Implosion may be stopped by counter pressure which compensates gravity
- Nuclear fusion (hot gas and radiation pressure): normal stars
- Electrons and neutrons are Fermions
- which, according to quantum theory, cannot occupy a state more than once (degeneration)
- Electron degeneration: white dwarfs (diameter of earth)
- Neutron degeneration: neutron stars (diameter 10 km)
- If mass is too large: black holes
- The mass of a white dwarf cannot exceed 1.44 M_{\odot} (Nobel prize Chandrasekhar 1930).

Normal matter Stars Distances Spectra

Distances

earth – sun	8 Lmin
next fixed star	4 Ly
to center of galaxy	25 kLy
M31 (Andromeda galaxy)	2.2 MLy
la-Supernova 1994D	50 MLy
AM 0644-741 (ring galaxy)	300 MLy
Hubble Deep Field Survey	several GLy
Abell 1835	pprox 13 GLy

Normal matter Stars Distances Spectra

M83

© European Southern Observatory

M83, diameter 60 thousand light years

Peter Hertel

Past, Present and Future of the Expanding Universe

Normal matter Stars Distances Spectra

Andromeda nebula

2.2 million light years

<ロ> <同> <同> < 回> < 回>

 Matter, Stars
 Normal matter

 Universe
 Stars

 Cosmology
 Distances

 Underway
 Spectra

la Supernova

• Burnt out medium-sized stars end up as white dwarfs. In only a few weeks more energy is produced than before in ten billion years, the lifetime of an ordinary star.

<ロ> <同> <同> < 同> < 同>

Normal matter Stars **Distances** Spectra

la Supernova

- Burnt out medium-sized stars end up as white dwarfs. In only a few weeks more energy is produced than before in ten billion years, the lifetime of an ordinary star.
- The mass of a white star may increase at the cost of a neighboring star.

<ロ> <同> <同> < 同> < 同>

Normal matter Stars **Distances** Spectra

la Supernova

- Burnt out medium-sized stars end up as white dwarfs. In only a few weeks more energy is produced than before in ten billion years, the lifetime of an ordinary star.
- The mass of a white star may increase at the cost of a neighboring star.
- When surpassing 1.44 M_{\odot} there will be a la supernova with allways the same time profile and absolute brightness (standard candle).

<ロ> <同> <同> < 同> < 同>

Normal matter Stars **Distances** Spectra

la Supernova

- Burnt out medium-sized stars end up as white dwarfs. In only a few weeks more energy is produced than before in ten billion years, the lifetime of an ordinary star.
- The mass of a white star may increase at the cost of a neighboring star.
- When surpassing 1.44 M_{\odot} there will be a la supernova with allways the same time profile and absolute brightness (standard candle).
- If absolute and apparent brightness are known, the distance of the la supernova can be worked out.

イロン 不同 とくほう イロン

Normal matter Stars Distances Spectra

IaSN 1994D

60 million light years away

Peter Hertel Past, Present and Future of the Expanding Universe

<ロ> <同> <同> < 同> < 同>

æ

Normal matter Stars **Distances** Spectra

Ring galaxy

300 million light years away

Peter Hertel Past, Present and Future of the Expanding Universe

▲□ ▶ ▲ □ ▶ ▲ □

Normal matter Stars **Distances** Spectra

Hubble Deep Field Survey

10 days light collection, more than one billion light years deep.

Peter Hertel Past, Present and Future of the Expanding Universe

- 4 回 2 - 4 □ 2 - 4 □

Normal matter Stars **Distances** Spectra

Abell 1835

Abell 1835 IR1916 - the Farthest Galaxy - Seen in the Near-Infrared (VLT ANTU + ISAAC)

<ロ> <同> <同> < 同> < 同>

3

ESO PR Photo 05a/04 (1 March 2004)

© European Southern Observatory

approximately 13 billion light years

Peter Hertel Past, Present and Future of the Expanding Universe

redshift
$$z = \frac{\lambda' - \lambda}{\lambda}$$

<ロ> <同> <同> < 同> < 同>

æ

	Matter, Stars Universe Cosmology Underway	Hubble's law Abundance of light elements Background radiation Summary	
Hubble's law			

• Observation: red shift increases with decreasing brightness of la Supernovae (distance)

→ ∃ → → ∃ →

Hubble's law Abundance of light elements Background radiation Summary

Hubble's law

- Observation: red shift increases with decreasing brightness of la Supernovae (distance)
- Premature explanation: Doppler effect, explosion

Matter, Stars	Hubble's law
Universe	Abundance of light elements
Cosmology	Background radiation
Underway	Summary

Hubble's law

- Observation: red shift increases with decreasing brightness of la Supernovae (distance)
- Premature explanation: Doppler effect, explosion

•
$$z = \sqrt{\frac{c+v}{c-v}} - 1 \approx \frac{v}{c} \propto d$$

Matter, Stars	Hubble's law
Universe	Abundance of light elen
Cosmology	Background radiation
Underway	Summary

Hubble's law

- Observation: red shift increases with decreasing brightness of la Supernovae (distance)
- Premature explanation: Doppler effect, explosion

•
$$z = \sqrt{\frac{c+v}{c-v}} - 1 \approx \frac{v}{c} \propto d$$

• Today's explanation: space is expanding. The older the light, the more its photons have been stretched meanwhile.

・ロト ・四ト ・ヨト ・ヨト

latter, Stars	Hubble's law
Cosmology	Background radiation
Underway	Summary

Hubble's law

- Observation: red shift increases with decreasing brightness of la Supernovae (distance)
- Premature explanation: Doppler effect, explosion

•
$$z = \sqrt{\frac{c+v}{c-v}} - 1 \approx \frac{v}{c} \propto d$$

- Today's explanation: space is expanding. The older the light, the more its photons have been stretched meanwhile.
- Unavoidable conclusion: Big Bang

・ロト ・回ト ・ヨト ・ヨト

Hubble's law Abundance of light elements Background radiation Summary

Synthesis in an early stage of the universe

Synthesis in the early universe

< ロ > < 同 > < 回 > < 回 >

э

Hubble's law Abundance of light elements Background radiation Summary

Microwave background radiation

Wilkinson Microwave Asymmetry Probe (WMAP), NASA, 2003

Peter Hertel

Past, Present and Future of the Expanding Universe

イロト イポト イヨト イヨト

Hubble's law Abundance of light elements Background radiation Summary

WMAP sattelite

Orbits the sun in sync with earth, four times moon distance

Peter Hertel Past, Present and Future of the Expanding Universe

Hubble's law Abundance of light elements Background radiation Summary

Four important facts

• Big Bang¹.

¹In the beginning God created heaven and earth. First sentence of the Jewish bible

Matter, Stars Hu Universe Ab Cosmology Ba Underway Su

Hubble's law Abundance of light elements Background radiation Summary

Four important facts

- Big Bang¹.
- The universe, on a big scale, is isotropic and expands more and more.

¹In the beginning God created heaven and earth. First sentence of the Jewish bible

Matter, Stars Hubble's law Universe Abundance of Cosmology Background Underway Summary

Hubble's law Abundance of light elements Background radiation Summary

Four important facts

- Big Bang¹.
- The universe, on a big scale, is isotropic and expands more and more.
- Also the cosmic background radiation (afterglow) is isotropic.

¹In the beginning God created heaven and earth. First sentence of the Jewish bible

Matter, Stars Hub Universe Abu Cosmology Back Underway Sum

Hubble's law Abundance of light elements Background radiation Summary

Four important facts

- Big Bang¹.
- The universe, on a big scale, is isotropic and expands more and more.
- Also the cosmic background radiation (afterglow) is isotropic.
- Abundance of elements indicates extreme temperature of the early universe.

¹In the beginning God created heaven and earth. First sentence of the Jewish bible

Principles General relativity Standard model

Basic principles of a cosmological theory

• The Universe is a physical system.

<ロ> <同> <同> < 同> < 同>

Principles General relativity Standard model

Basic principles of a cosmological theory

- The Universe is a physical system.
- Einstein's theory of gravitation (General Relativity)

イロト イポト イヨト イヨト

Principles General relativity Standard model

Basic principles of a cosmological theory

- The Universe is a physical system.
- Einstein's theory of gravitation (General Relativity)
- Cosmological principle: all locations and all directions are equivalent.

イロト イポト イヨト イヨト

Principles General relativity Standard model

Space, time and matter

• Space-time metric $ds^2 = g_{ik}(x)dx^i dx^k$

イロト 不得 トイヨト イヨト 二日

Principles General relativity Standard model

Space, time and matter

- Space-time metric $ds^2 = g_{ik}(x)dx^i dx^k$
- Metric determines curvature tensor R_{ik}(x) and curvature scalar R(x)

イロト イポト イヨト イヨト

Principles General relativity Standard model

Space, time and matter

- Space-time metric $ds^2 = g_{ik}(x)dx^i dx^k$
- Metric determines curvature tensor R_{ik}(x) and curvature scalar R(x)
- $T_{ik}(x)$ is energy-momentum tensor

ヘロト ヘヨト ヘヨト ヘヨト

Principles General relativity Standard model

Space, time and matter

- Space-time metric $ds^2 = g_{ik}(x)dx^i dx^k$
- Metric determines curvature tensor R_{ik}(x) and curvature scalar R(x)
- $T_{ik}(x)$ is energy-momentum tensor

•
$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}T_{ik} + \Lambda g_{ik}$$

Principles General relativity Standard model

Space, time and matter

- Space-time metric $ds^2 = g_{ik}(x)dx^i dx^k$
- Metric determines curvature tensor R_{ik}(x) and curvature scalar R(x)
- $T_{ik}(x)$ is energy-momentum tensor

•
$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}T_{ik} + \Lambda g_{ik}$$

• Mass and radiation propagates along geodesic lines...

イロト イポト イヨト イヨト

Principles General relativity Standard model

Space, time and matter

- Space-time metric $ds^2 = g_{ik}(x)dx^i dx^k$
- Metric determines curvature tensor R_{ik}(x) and curvature scalar R(x)
- $T_{ik}(x)$ is energy-momentum tensor

•
$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}T_{ik} + \Lambda g_{ik}$$

- Mass and radiation propagates along geodesic lines...
- which are defined by the metric (see above)

イロト イポト イヨト イヨト

Principles General relativity Standard model

Can you still follow me?

<ロ> <同> <同> < 同> < 同>

Principles General relativity Standard model

Einstein is right!

• Light deflection by the sun (1919)

イロン イロン イヨン イヨン

Principles General relativity Standard model

Einstein is right!

- Light deflection by the sun (1919)
- Advance of perihelion of innermost planet Mercury

イロト イポト イヨト イヨト

Principles General relativity Standard model

Einstein is right!

- Light deflection by the sun (1919)
- Advance of perihelion of innermost planet Mercury
- GPS

Peter Hertel Past, Present and Future of the Expanding Universe

イロト イポト イヨト イヨト

Principles General relativity Standard model

Einstein is right!

- Light deflection by the sun (1919)
- Advance of perihelion of innermost planet Mercury
- GPS
- Neutron double stars

イロト イポト イヨト イヨト

Principles General relativity Standard model

Einstein is right!

- Light deflection by the sun (1919)
- Advance of perihelion of innermost planet Mercury
- GPS
- Neutron double stars
- Gravitational lens

<ロ> <同> <同> < 同> < 同>

Principles General relativity Standard model

Einstein is right!

- Light deflection by the sun (1919)
- Advance of perihelion of innermost planet Mercury
- GPS
- Neutron double stars
- Gravitational lens
- Black holes

<ロ> <同> <同> < 同> < 同>

Principles General relativity Standard model

Gravitational lens

Peter Hertel Past, Present and Future of the Expanding Universe

・ロト ・四ト ・ヨト ・ヨト

Principles General relativity Standard model

Black hole in the center of our Galaxy

Orbit in 15 years, closest distance 17 light hours, more than four million sun masses

Peter Hertel Past, Present and Future of the Expanding Universe

イロト イポト イヨト イヨト

Principles General relativity Standard model

Cosmological standard model

•
$$ds^2 = c^2 dt^2 - \alpha(t)^2 \{ \frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \}$$

Principles General relativity Standard model

Cosmological standard model

•
$$ds^2 = c^2 dt^2 - \alpha(t)^2 \left\{ \frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right\}$$

• k = 0: space curvature vanishes (flat world) or $k = \pm 1$

(a)

Principles General relativity Standard model

Cosmological standard model

•
$$ds^2 = c^2 dt^2 - \alpha(t)^2 \{ \frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \}$$

- k = 0: space curvature vanishes (flat world) or $k = \pm 1$
- Differential equation for world radius $\alpha(t)$

(a)

Principles General relativity Standard model

Cosmological standard model

•
$$ds^2 = c^2 dt^2 - \alpha(t)^2 \{ \frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \}$$

- k = 0: space curvature vanishes (flat world) or $k = \pm 1$
- Differential equation for world radius lpha(t)
- mass density ρ and pressure p (equation of state) must be known

イロト 不得 トイヨト イヨト 二日

Principles General relativity Standard model

Today's status (**A**DCM)

• $\rho/\rho_{kr} = 1.02 \pm 0.02$. Cosmos is flat (k=0).

Principles General relativity Standard model

Today's status (**A**DCM)

- $\rho/\rho_{kr} = 1.02 \pm 0.02$. Cosmos is flat (k=0).
- The cosmological term (Λ) causes 73% of expansion (dark energy).
Principles General relativity Standard model

Today's status (**A**DCM)

- $\rho/\rho_{kr} = 1.02 \pm 0.02$. Cosmos is flat (k=0).
- The cosmological term (Λ) causes 73% of expansion (dark energy).
- $\bullet\,$ Normal visible matter is involved with only 4% .

Principles General relativity Standard model

Today's status (**A**DCM)

- $\rho/\rho_{kr} = 1.02 \pm 0.02$. Cosmos is flat (k=0).
- The cosmological term (Λ) causes 73% of expansion (dark energy).
- Normal visible matter is involved with only 4% .
- The rest of 23%, dark matter, is cold (does not produce pressure). Neutrinos are out.

Principles General relativity Standard model

Today's status (**A**DCM)

- $\rho/\rho_{kr} = 1.02 \pm 0.02$. Cosmos is flat (k=0).
- The cosmological term (Λ) causes 73% of expansion (dark energy).
- Normal visible matter is involved with only 4% .
- The rest of 23%, dark matter, is cold (does not produce pressure). Neutrinos are out.
- Lambda dominated cold dark matter.

・ロト ・回ト ・ヨト ・ヨト

Principles General relativity Standard model

Today's status (**A**DCM)

- $\rho/\rho_{kr} = 1.02 \pm 0.02$. Cosmos is flat (k=0).
- The cosmological term (Λ) causes 73% of expansion (dark energy).
- Normal visible matter is involved with only 4% .
- The rest of 23%, dark matter, is cold (does not produce pressure). Neutrinos are out.
- Lambda dominated cold dark matter.
- The universe is 13.7 ± 0.2 billion years old.

・ロト ・回ト ・ヨト ・ヨト

Principles General relativity Standard model

Today's status (**A**DCM)

- $\rho/\rho_{kr} = 1.02 \pm 0.02$. Cosmos is flat (k=0).
- The cosmological term (Λ) causes 73% of expansion (dark energy).
- \bullet Normal visible matter is involved with only 4% .
- The rest of 23%, dark matter, is cold (does not produce pressure). Neutrinos are out.
- Lambda dominated cold dark matter.
- The universe is 13.7 ± 0.2 billion years old.
- Radiation decoupled from matter after 380 thousand years.

< ロ > < 同 > < 回 > < 回 > < □ > <

Principles General relativity Standard model

History

Big Bang	13.7 GY
solar system	4.6 GY
first protozoae	3.5 GY
vertebrates	500 MY
flowering plants	100 MY
mammals	50 MY
Homo habilis	2 MY
Homo sapiens	200 kY
early civilizations	5 kY

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory
SDSS		

• *Sloane Digital Sky Survey*: complete and automated scan of one fourth of the sky

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
SDSS			

- *Sloane Digital Sky Survey*: complete and automated scan of one fourth of the sky
- 100 millionen cosmic objects with spectra

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
SDSS			

- *Sloane Digital Sky Survey*: complete and automated scan of one fourth of the sky
- 100 millionen cosmic objects with spectra
- among them 1 Million galaxies and quasars

- 4 同 6 4 日 6 4 日 6

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
SDSS			

- *Sloane Digital Sky Survey*: complete and automated scan of one fourth of the sky
- 100 millionen cosmic objects with spectra
- among them 1 Million galaxies and quasars
- The Sloan Digital Sky Survey is the most ambitious astronomical survey project ever undertaken.

- 4 同 6 4 日 6 4 日 6

M	Matter, Stars UniverseSDSS Planck Theory	
SDSS		

- *Sloane Digital Sky Survey*: complete and automated scan of one fourth of the sky
- 100 millionen cosmic objects with spectra
- among them 1 Million galaxies and quasars
- The Sloan Digital Sky Survey is the most ambitious astronomical survey project ever undertaken.
- results accessible via internet

イロト イポト イヨト イヨト

Matter, Stars
Universe
Cosmology
Underway

SDSS Planck Theory

SDSS

Peter Hertel Past, Present and Future of the Expanding Universe

・ロト ・回ト ・モト ・モト

- 2

Matter, Stars Universe Cosmology Undervay	SDSS Planck Theory
Planck	

• Successor of WMAP, 1800 kg

・ロト ・回ト ・モト ・モト

æ

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
Planck			

- Successor of WMAP, 1800 kg
- European Space Agency ESA

<ロ> (日) (日) (日) (日) (日)

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
Planck			

- Successor of WMAP, 1800 kg
- European Space Agency ESA
- Ariane rocket, start 2008

- 4 回 > - 4 回 > - 4 回 >

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
Planck			

- Successor of WMAP, 1800 kg
- European Space Agency ESA
- Ariane rocket, start 2008
- much better angular resolution

A 10

Matter, Sta Univer Cosmolog Underv a	s SDSS Planck Theory
Planck	

- Successor of WMAP, 1800 kg
- European Space Agency ESA
- Ariane rocket, start 2008
- much better angular resolution
- however: enormous amount of data

A 10

A B > A B >

Matter, Stars	CD
Universe	SD: Die
Cosmology	
Underway	The

SDSS Planck Theory

WMAP detail

Temperature fluctuations - detail of the WMAP map

Peter Hertel Past, Present and Future of the Expanding Universe

ロトスロトスモトスモン

Matter, Stars	CD
Universe	SD: Die
Cosmology	
Underway	The

SS nck eory

Planck detail

Temperature fluctuations - as Planck will see it

・ロト ・回ト ・ヨト ・ヨト

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
Dark energy?			

- 4 回 2 - 4 □ 2 - 4 □

æ

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
Dark energy?			

•
$$\left| R_{ik} - \frac{1}{2} g_{ik} R = \frac{8\pi G}{c^4} T_{ik} + \Lambda g_{ik} \right|$$

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
Dark energy?			

•
$$\left| R_{ik} - \frac{1}{2} g_{ik} R = \frac{8\pi G}{c^4} T_{ik} + \Lambda g_{ik} \right|$$

• causes 73% of the expansion of the universe!

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
Dark energy?			

•
$$\left| R_{ik} - \frac{1}{2} g_{ik} R = \frac{8\pi G}{c^4} T_{ik} + \Lambda g_{ik} \right|$$

- causes 73% of the expansion of the universe!
- Virtual particle/antiparticle pairs? Vacuum zero point energy?

• = • • =

	Matter, Stars Universe Cosmology Underway	SDSS Planck Theory	
Dark energy?			

•
$$\left| R_{ik} - \frac{1}{2} g_{ik} R = \frac{8\pi G}{c^4} T_{ik} + \Lambda g_{ik} \right|$$

- causes 73% of the expansion of the universe!
- Virtual particle/antiparticle pairs? Vacuum zero point energy?
- ... or even more exotic quantum effects?

• • = • • = •

Planck Theory

The most incomprehensible thing about the world is that it is at all comprehensible.

<ロ> <同> <同> < 同> < 同>