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Optics

o Neglect absorption x/(w)

o ie. yjj(w) = xj(w)

e drop (w)

e xj(E,B)

@ quasi-static external fields E; and B;
e Onsager: x;i(E,B) = x;i(E,—B)

@ Expand into powers of E and B
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Optics

Neglect absorption x/(w)

e xj(w) = xji(w)

drop (w)

XU(E7 B)

quasi-static external fields E; and B;
Onsager: x;i(E, B) = xi(E,—B)
Expand into powers of E and B

X = X0+ xYOE+x%1B + ...
Einstein’s summation convention
a-b=>7 ab=ab
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@ Plane wave F(t,x) =fe 1wt g N0

@ Maxwell's equations are
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Crystal optics

—iwt _inkgw - x
Plane wave F(t,x) =fe 1wt g 1%

Maxwell's equations are

°
°

@ cb = —nw x (ee) and e = nw x (cb)
o We write W for wx, Wi» = ws etc.
°

and eliminate the induction:
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Maxwell's equations are

cb = —nw x (ee) and e = nw x (cb)
We write W for wx, Wi> = ws etc.
and eliminate the induction:
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Maxwell's equations are

cb = —nw x (ee) and e = nw x (cb)
We write W for wx, Wi> = ws etc.
and eliminate the induction:

e 1W?e =n"2e

Because of Ww = 0 there is an unphysical solution e x w

Remaining two eigenvectors describe the polarization of the
plane wave
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Crystal optics

—iwt _inkgw - x
Plane wave F(t,x) =fe 1wt g 1%

Maxwell's equations are

cb = —nw x (ee) and e = nw x (cb)
We write W for wx, Wi> = ws etc.
and eliminate the induction:

e 1W?e =n"2e

Because of Ww = 0 there is an unphysical solution e x w

Remaining two eigenvectors describe the polarization of the
plane wave

@ corresponding eigenvalues n~? the refractive indexes
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No external fields

0,0 - .
° x; is real and symmetric, €;; as well
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No external fields

9.0 is real and tric, €;; I
Xij IS real an symme ric, GU as we

can be diagonalized by an orthogonal transformation

Optically isotropic media

e.g. glass, cubic crystals such as NaCl
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No external fields

All transversally polarized plane waves are allowed
Refractive index is n = /e = /1 + x

° X%o is real and symmetric, €;; as well

@ can be diagonalized by an orthogonal transformation
@ Optically isotropic media

@ e.g. glass, cubic crystals such as NaCl

o x5 = xJj

°

°
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No external fields

All transversally polarized plane waves are allowed

Refractive index is n = /e = /1 + x

Optically uniaxial crystals:

° X%o is real and symmetric, €;; as well

@ can be diagonalized by an orthogonal transformation
@ Optically isotropic media

@ e.g. glass, cubic crystals such as NaCl

o XZ-’O = X(S,'J'

°

°

°
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No external fields

9.0 is real and tric, €;; I
Xij IS real an symme ric, GU as we

can be diagonalized by an orthogonal transformation

Optically isotropic media

e.g. glass, cubic crystals such as NaCl
0,0 _ 5
Xij = XO9j
All transversally polarized plane waves are allowed

Refractive index is n = /e = /1 + x

Optically uniaxial crystals:

two eigenvalues of XZ"O are equal and differ from the third
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9.0 is real and tric, €;; I
Xij IS real an symme ric, GU as we

can be diagonalized by an orthogonal transformation

Optically isotropic media

e.g. glass, cubic crystals such as NaCl
0,0
Xij = X0jj
All transversally polarized plane waves are allowed
Refractive index is n = /e = /1 + x

Optically uniaxial crystals:

two eigenvalues of XZ"O are equal and differ from the third
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Optics

No external fields

All transversally polarized plane waves are allowed

Refractive index is n = /e = /1 + x
Optically uniaxial crystals:

° X%o is real and symmetric, €;; as well

@ can be diagonalized by an orthogonal transformation
@ Optically isotropic media

@ e.g. glass, cubic crystals such as NaCl

o XZ-’O = X(S,'J'

°

°

°

two eigenvalues of XZ"O are equal and differ from the third

e.g. lithium niobate

@ there is a preferred axis and, orthogonal to it, a preferred plane
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No external fields (ctd.)

@ Optically uniaxial crystals:
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@ Optically uniaxial crystals:

e ordinary refractive index n° if polarized in preferred plane

e n® = /e where ¢ is the doubly occurring eigenvalue
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No external fields (ctd.)

@ Optically uniaxial crystals:

e ordinary refractive index n° if polarized in preferred plane
e n® = /e where ¢ is the doubly occurring eigenvalue

@ extraordinary refractive index n® if polarized in preferred axis
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No external fields (ctd.)

Optically uniaxial crystals:

ordinary refractive index n® if polarized in preferred plane
n® = /e where ¢ is the doubly occurring eigenvalue

extraordinary refractive index n® if polarized in preferred axis

If light travels along the preferred (optical) axis, it can be
arbitrarily polarized
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Optically uniaxial crystals:

ordinary refractive index n® if polarized in preferred plane
n® = /e where ¢ is the doubly occurring eigenvalue

extraordinary refractive index n® if polarized in preferred axis

If light travels along the preferred (optical) axis, it can be
arbitrarily polarized

o If a beam enters crystal at an arbitrary angle, it splits into an
ordinary and an extraordinary beam.
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ordinary refractive index n® if polarized in preferred plane
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Optically uniaxial crystals:

ordinary refractive index n® if polarized in preferred plane
n® = /e where ¢ is the doubly occurring eigenvalue

extraordinary refractive index n® if polarized in preferred axis

If light travels along the preferred (optical) axis, it can be
arbitrarily polarized

o If a beam enters crystal at an arbitrary angle, it splits into an
ordinary and an extraordinary beam.

@ Birefringence
@ Optically biaxial crystal:

o all three eigenvalues of ¢;; are different
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No external fields (ctd.)

Optically uniaxial crystals:

ordinary refractive index n® if polarized in preferred plane
n® = /e where ¢ is the doubly occurring eigenvalue

extraordinary refractive index n® if polarized in preferred axis

If light travels along the preferred (optical) axis, it can be
arbitrarily polarized

If a beam enters crystal at an arbitrary angle, it splits into an
ordinary and an extraordinary beam.

Birefringence
Optically biaxial crystal:

all three eigenvalues of ¢;; are different

e.g. potassium niobate
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Optics

No external fields (ctd.)

Optically uniaxial crystals:

ordinary refractive index n® if polarized in preferred plane
n® = /e where ¢ is the doubly occurring eigenvalue

extraordinary refractive index n® if polarized in preferred axis

If light travels along the preferred (optical) axis, it can be
arbitrarily polarized

If a beam enters crystal at an arbitrary angle, it splits into an
ordinary and an extraordinary beam.

Birefringence
Optically biaxial crystal:

all three eigenvalues of ¢;; are different

e.g. potassium niobate

two optical axes
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@ Ayj; must be be hermitian and symmetric, hence real

@ Maxwell's equations are invariant with respect to space
inversion

° t: X, p7j7 Ev B goes to ta —X, P, _j7 _E7 B
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Pockels effect

contribution dx;; = XE-’koEk

Ax ;i must be be hermitian and symmetric, hence real

Maxwell's equations are invariant with respect to space
inversion

tax7p7j7 Ev B goes to ta —X, P, _j7 _E7 B
€V -E=pand (1/10)V x B — ¢E = j
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Pockels effect

@ contribution dx;; = XE-’koEk
@ Ayj; must be be hermitian and symmetric, hence real

@ Maxwell's equations are invariant with respect to space

inversion
e t,x,p,j,E,B goes to t,—x,p,—j,—E,B
o ¢V -E=pand (1/10)V x B — ¢E =
e V-B=0and VXE+B=0
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Pockels effect

@ contribution dx;; = XE-’koEk

@ Ayxjj must be be hermitian and symmetric, hence real

Maxwell's equations are invariant with respect to space
inversion

tax7p7j7 EvB goes to ta —X, P, _j7_E7B
€V -E=pand (1/10)V x B — ¢E = j
V-B=0and VxE+B=0

. . . 1,0 .. .
If there is an space inversion center, Xjjk must coincide with
negative, hence vanish.
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Pockels effect

@ contribution dx;; = XE-’koEk

@ Ayxjj must be be hermitian and symmetric, hence real

Maxwell's equations are invariant with respect to space
inversion

tax7p7j7 EvB goes to ta —X, P, _j7_E7B
€V -E=pand (1/10)V x B — ¢E = j
V-B=0and VxE+B=0

. . . 1,0 .. .
If there is an space inversion center, Xjjk must coincide with
negative, hence vanish.

@ Pockels effect only for crystals without inversion center
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Pockels effect

@ contribution dx;; = XE-’koEk

@ Ayxjj must be be hermitian and symmetric, hence real

@ Maxwell's equations are invariant with respect to space
Inversion

e t,x,p,j,E,B goes to t,—x,p,—j,—E,B

o ¢V -E=pand (1/10)V x B — ¢E =

o V-B=0and VXE+B=0

@ If there is an space inversion center, Xb’,? must coincide with
negative, hence vanish.

@ Pockels effect only for crystals without inversion center

@ e.g. lithium niobate
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Magneto- and electrooptics

Pockels effect

@ contribution dx;; = XE-’koEk

@ Ayxjj must be be hermitian and symmetric, hence real

@ Maxwell's equations are invariant with respect to space
Inversion

e t,x,p,j,E,B goes to t,—x,p,—j,—E,B

o ¢V -E=pand (1/10)V x B — ¢E =

o V-B=0and VXE+B=0

@ If there is an space inversion center, Xb’,? must coincide with
negative, hence vanish.

@ Pockels effect only for crystals without inversion center

@ e.g. lithium niobate

o Pockels effect allows to efficiently modulate and switch light
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Friedrich Carl Alwin Pockels
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@ contribution Ay = Xg-’lek
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Faraday effect

@ contribution Ay = Xg-’lek
@ A must be hermitian and antisymmetric, hence purely
imaginary
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Faraday effect

I 0,1

@ contribution Ay = Xijk By

@ Ay must be hermitian and antisymmetric, hence purely
imaginary

@ e.g. yttrium iron garnet (YIG), a ferri-magnet
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e B=pyoM
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Faraday effect

@ contribution Ay = Xg-’lek

@ Ay must be hermitian and antisymmetric, hence purely
imaginary

@ e.g. yttrium iron garnet (YIG), a ferri-magnet

e B=pyoM

] AXij = Xg-’lek = iKE;jk/\/lk
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Faraday effect

contribution Ay = Xg-’lek

Axj must be hermitian and antisymmetric, hence purely
imaginary

e.g. yttrium iron garnet (YIG), a ferri-magnet

B = /L()M

AXij = Xg-’lek = iKE;jk/\/lk

Because of Faraday effect, left handed and right handed

circularly polarized light beams propagate with different

refractive indexes n; and ng
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Faraday effect

contribution Ay = Xg-’lek

Axj must be hermitian and antisymmetric, hence purely
imaginary

e.g. yttrium iron garnet (YIG), a ferri-magnet

B = /L()M

AXij = Xg-’lek = iKE;jk/\/lk

Because of Faraday effect, left handed and right handed
circularly polarized light beams propagate with different
refractive indexes n; and ng

@ When incident on the crystal, a linearly polarized wave splits
into a superposition of left handed and right handed circularly
polarized light

Peter Hertel Electro- and magnetooptic effects and spatial dispersion



Magneto- and electrooptics

Faraday effect

contribution Ay = X(,;-’lek

Axj must be hermitian and antisymmetric, hence purely

imaginary

e.g. yttrium iron garnet (YIG), a ferri-magnet

B = /L()M

AXij = Xg-’lek = iKE;jk/\/lk

Because of Faraday effect, left handed and right handed

circularly polarized light beams propagate with different

refractive indexes n; and ng

@ When incident on the crystal, a linearly polarized wave splits
into a superposition of left handed and right handed circularly
polarized light

@ When exiting the crystal, they superimpose to a linearly

polarized beam
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Faraday effect

contribution Ay = X(,;-’lek

Axj must be hermitian and antisymmetric, hence purely
imaginary

e.g. yttrium iron garnet (YIG), a ferri-magnet

B = /L()M

AXij = Xg-’lek = iKE;jk/\/lk

Because of Faraday effect, left handed and right handed
circularly polarized light beams propagate with different
refractive indexes n; and ng

When incident on the crystal, a linearly polarized wave splits
into a superposition of left handed and right handed circularly
polarized light

When exiting the crystal, they superimpose to a linearly
polarized beam

However, polarization has been rotated
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Faraday effect

contribution Ay = X(,;-’lek

Axj must be hermitian and antisymmetric, hence purely
imaginary

e.g. yttrium iron garnet (YIG), a ferri-magnet

B = /L()M

AXij = Xg-’lek = iKE;jk/\/lk

Because of Faraday effect, left handed and right handed
circularly polarized light beams propagate with different
refractive indexes n; and ng

When incident on the crystal, a linearly polarized wave splits
into a superposition of left handed and right handed circularly
polarized light

When exiting the crystal, they superimpose to a linearly
polarized beam

However, polarization has been rotated
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Magneto- and electrooptics

Faraday effect (ctd.)

@ Assume polarized beam in the direction of magnetization, say
3-axis, ko = w/c, k = nky(0,0,1)
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Magneto- and electrooptics

Faraday effect (ctd.)

@ Assume polarized beam in the direction of magnetization, say
3-axis, ko = w/c, k = nky(0,0,1)
@ solve —k x k x E = kgeE
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Magneto- and electrooptics

Faraday effect (ctd.)

@ Assume polarized beam in the direction of magnetization, say
3-axis, ko = w/c, k = nkp(0,0,1)

@ solve —k x k x E = kgeE

@ pemittivity tensor is

€ iKM 0
€= —iKM € 0
0 0 €
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Magneto- and electrooptics

Faraday effect (ctd.)

@ Assume polarized beam in the direction of magnetization, say
3-axis, ko = w/c, k = nkp(0,0,1)

@ solve —k x k x E = kgeE

@ pemittivity tensor is

€ iKM 0
€= —iKM € 0
0 0 €
@ solutions are

e =

Sl

N

o
Sl
N

o
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Faraday effect (ctd.)

@ Assume polarized beam in the direction of magnetization, say
3-axis, ko = w/c, k = nkp(0,0,1)

@ solve —k x k x E = kgeE

@ pemittivity tensor is

€ iKM 0
€= —iKM € 0
0 0 €
@ solutions are
1 (1 1 (T
e =—1| i andegr = — | —i

V2o V2 o

o refractive indexes n? = ¢ + KM and n% = ¢ — KM
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Magneto- and electrooptics

Faraday effect (ctd.)

@ Assume polarized beam in the direction of magnetization, say
3-axis, ko = w/c, k = nkp(0,0,1)

@ solve —k x k x E = kgeE

@ pemittivity tensor is

€ iKM 0
€= —iKM € 0
0 0 €
@ solutions are
1 (1 1 (T
e =—1| i andegr = — | —i

V2o V2 o

o refractive indexes n? = ¢ + KM and n% = ¢ — KM
o specific Faraday rotation constant is
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Michael Faraday
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Magneto- and electrooptics

Kerr effect

@ contribution Ax;; = XE.’kO,EkE,
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Kerr effect

@ contribution Ax;; = XE.’kO,EkE,

@ much weaker than Pockels effect, if the latter is allowed
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Kerr effect

@ contribution Ax;; = XE.’kO,EkE,
@ much weaker than Pockels effect, if the latter is allowed

@ possible even for isotropic media
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Magneto- and electrooptics

Kerr effect

contribution Ax;; = Xi.’ko,EkE,
much weaker than Pockels effect, if the latter is allowed

possible even for isotropic media

2.0
Xijki = '75ij5kl
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Kerr effect

@ contribution Ax;; = XE.’kO,EkE,

@ much weaker than Pockels effect, if the latter is allowed
@ possible even for isotropic media

° Xikol = 700k

o ie. Ay =0;|E|?
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Magneto- and electrooptics

Kerr effect

@ contribution Ax;; = XE.’kO,EkE,

@ much weaker than Pockels effect, if the latter is allowed
@ possible even for isotropic media

® X = 160

o ie. Ay =0;|E|?

@ Note, however, that this formula is also applied if E is a

rapidly oscillating field
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Magneto- and electrooptics

Kerr effect

contribution Ax;; = Xi.’ko,EkE,
much weaker than Pockels effect, if the latter is allowed
possible even for isotropic media
2,0
Xijki = '75ij5kl
i.e. Ay =0;]E[?

Note, however, that this formula is also applied if E is a
rapidly oscillating field

@ Should be studied by Nonlinear Response Theory
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Magneto- and electrooptics

Kerr effect

@ contribution Ax;; = XE.’kO,EkE,

@ much weaker than Pockels effect, if the latter is allowed
@ possible even for isotropic media

® X = 160

o ie. Ay =0;|E|?

@ Note, however, that this formula is also applied if E is a

rapidly oscillating field
@ Should be studied by Nonlinear Response Theory
@ also Xifl X 5ik5jl + 5i15jk
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Magneto- and electrooptics

Kerr effect

@ contribution Ax;; = XE.’kO,EkE,

@ much weaker than Pockels effect, if the latter is allowed
@ possible even for isotropic media

® X = 160

o ie. Ay =0;|E|?

@ Note, however, that this formula is also applied if E is a

rapidly oscillating field
@ Should be studied by Nonlinear Response Theory
@ also Xifl X 5ik5jl + 5i15jk
e gives Ax;i o< EjE;, causes birefringence
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Magneto- and electrooptics

Kerr effect

@ contribution Ax;; = XE.’kO,EkE,

@ much weaker than Pockels effect, if the latter is allowed

@ possible even for isotropic media

° Xikol = Y0ij0u

o ie. Ay =0;|E|?

@ Note, however, that this formula is also applied if E is a
rapidly oscillating field

@ Should be studied by Nonlinear Response Theory

@ also ij’,?, X Oikdj; + 0jfdjk

e gives Ax;i o< EjE;, causes birefringence

o Kerr cell
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Magneto- and electrooptics

John Kerr
(1824-1907)

John Kerr
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Magneto- and electrooptics

Magneto-electric effect

@ contribution Ax;; = XE'}(I/EkBI
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Magneto- and electrooptics

Magneto-electric effect

@ contribution Ax;; = XE'}(I/EkBI

@ no special name
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Magneto- and electrooptics

Magneto-electric effect

A 11
@ contribution Ax;; = X,'jk/EkBl
@ no special name

@ Pockels effect depens linearly on magnetic induction
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Magneto- and electrooptics

Magneto-electric effect

@ contribution Ax;; = XE'}(I/EkBI

@ no special name

@ Pockels effect depens linearly on magnetic induction
]

Faraday effect depends linearly on electric field strength
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Magneto- and electrooptics

Magneto-electric effect

A 11

contribution Ax;; = Xijk/EkB/

no special name

Pockels effect depens linearly on magnetic induction
Faraday effect depends linearly on electric field strength

The crystal must be ferri- or ferromagnetic, transparent, and
must not have an inversion center
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Magneto- and electrooptics

Magneto-electric effect

A 11

contribution Ax;; = Xijk/EkB/

no special name

Pockels effect depens linearly on magnetic induction
Faraday effect depends linearly on electric field strength

The crystal must be ferri- or ferromagnetic, transparent, and
must not have an inversion center
e 777
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Magneto- and electrooptics

Cotton-Mouton effect

@ contribution Ax;; = Xg-f,BkB/
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Magneto- and electrooptics

Cotton-Mouton effect

@ contribution Ax;; = Xg.f,BkB,

@ very weak for paramagnetic substances
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Magneto- and electrooptics

Cotton-Mouton effect

@ contribution Ax;; = Xg.f,BkB,
@ very weak for paramagnetic substances

@ but might be strong for ferri- or ferromagnetic crystals
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Magneto- and electrooptics

Cotton-Mouton effect

@ contribution Ax;; = Xg.f,BkB,
@ very weak for paramagnetic substances
@ but might be strong for ferri- or ferromagnetic crystals

o Ay o §;/M|? will escape detection
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Magneto- and electrooptics

Cotton-Mouton effect

contribution Ax;; = Xg.f,BkB,
very weak for paramagnetic substances
but might be strong for ferri- or ferromagnetic crystals

Ay x (5,-J'|M|2 will escape detection

but Ax;;j oc M;M; causes birefringence
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Magneto- and electrooptics

Cotton-Mouton effect
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contribution Ax;; = Xg.f,BkB,

very weak for paramagnetic substances

but might be strong for ferri- or ferromagnetic crystals
A o< §;;|M|? will escape detection

but Ax;;j oc M;M; causes birefringence

Cotton-Mouton effect is reciprocal



Magneto- and electrooptics

Cotton-Mouton effect

contribution Ax;; = Xg.f,BkB,

very weak for paramagnetic substances

but might be strong for ferri- or ferromagnetic crystals
A o< §;;|M|? will escape detection

but Ax;;j oc M;M; causes birefringence

Cotton-Mouton effect is reciprocal

it does not differentiate between forward and backward
propagation
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Spatial dispersion

Spatial dispersion

@ Recall

vilwsa) = = / dre'®T / Pee 9 Er(rq)
0

€0
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Spatial dispersion

Spatial dispersion

@ Recall

vilwsa) = = / dre'®T / Pee 9 Er(rq)
0

€0

@ where .
(7€) = tr G%[P,-(T,S), P;(0,0)]
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Spatial dispersion

Spatial dispersion

@ Recall

vilwsa) = = / dre'®T / Pee 9 Er(rq)
0

€0

@ where .
(7€) = tr G%[P,-(T,S), P;(0,0)]

° IAD,(w,q) = XU(w7q)Ej(w7q)
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Spatial dispersion

Spatial dispersion

@ Recall

vilwsa) = = / dre'®T / Pee 9 Er(rq)
0

€0

@ where .
(7€) = tr G%[P,-(T,S), P;(0,0)]

° Pl(w7q) = XU(w7q)Ej(w7q)
@ In linear approximation, response P; has same angular
frequency w and wave vector q as perturbation E;
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Spatial dispersion

Dispersion relation

@ The arguments of I::,-(w,q) are not independent
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Spatial dispersion

Dispersion relation

@ The arguments of I::,-(w,q) are not independent

@ after all, there are Maxwell's equations
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Spatial dispersion

Dispersion relation

@ The arguments of I::,-(w,q) are not independent

@ after all, there are Maxwell's equations
o (6%0; — qigj)Ej = (w/)* (85 + xi)E
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Spatial dispersion

Dispersion relation

@ The arguments of I::,-(w,q) are not independent

@ after all, there are Maxwell's equations
o (a0 — 4ia)E; = (w/)* (95 + x)E;
@ both EJ and x;; depend on w and q
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Spatial dispersion

Dispersion relation

The arguments of I::,-(w,q) are not independent

after all, there are Maxwell's equations
(9°65 — qiq) E; = (w/c)? (65 + xy)E;
both EJ and x;; depend on w and q

g given, find w such that Maxwell’s equations are satisfied for
a non-trivial eigenvector (polarization)
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Spatial dispersion

Dispersion relation

The arguments of I::,-(w,q) are not independent

after all, there are Maxwell's equations
(9°65 — qiq) E; = (w/c)? (65 + xy)E;
both EJ and x;; depend on w and q

g given, find w such that Maxwell’s equations are satisfied for
a non-trivial eigenvector (polarization)

w = w(q) is a dispersion relation.
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Spatial dispersion

Dispersion relation

The arguments of I::,-(w,q) are not independent

after all, there are Maxwell's equations
(9°65 — qiq) E; = (w/c)? (65 + xy)E;
both EJ and x;; depend on w and q

g given, find w such that Maxwell’s equations are satisfied for
a non-trivial eigenvector (polarization)

w = w(q) is a dispersion relation.

eigenvalue problem is non-linear, since w enters multiply
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Spatial dispersion

Dispersion relation

@ The arguments of I::,-(w,q) are not independent
@ after all, there are Maxwell's equations

o (a°65 — qiq))Ej = (w/e)* (65 + xip)E;

@ both EJ and x;; depend on w and q

@ ¢ given, find w such that Maxwell’s equations are satisfied for
a non-trivial eigenvector (polarization)

e w =w(q) is a dispersion relation.
@ eigenvalue problem is non-linear, since w enters multiply

o if xji(w) = xjj(w,0) is used, then w may be considered an
indipenden variable and the refractive index n in q = nkgw
can be determined
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Spatial dispersion

Dispersion relation

@ The arguments of I::,-(w,q) are not independent
@ after all, there are Maxwell's equations

o (a°65 — qiq))Ej = (w/e)* (65 + xip)E;

@ both EJ and x;; depend on w and q

@ ¢ given, find w such that Maxwell’s equations are satisfied for
a non-trivial eigenvector (polarization)

e w =w(q) is a dispersion relation.
@ eigenvalue problem is non-linear, since w enters multiply

o if xji(w) = xjj(w,0) is used, then w may be considered an
indipenden variable and the refractive index n in q = nkgw
can be determined

@ ...as discussed earlier
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Spatial dispersion

Optical activity

° Xij(w,a) = xjj(w, 0) + xFi(w)qx
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Spatial dispersion

Optical activity

° Xij(w,a) = xjj(w, 0) + xFi(w)qx
e Invariance with respect to time reversal: I'j;(7,&) = Ii(7,—§)
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Spatial dispersion

Optical activity

° Xij(w,a) = xjj(w, 0) + xFi(w)qx
e Invariance with respect to time reversal: I'j;(7,&) = Ii(7,—§)

@ which implies xji(w,q) = xji(w, —q)
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Spatial dispersion

Optical activity

° xijj(w,a) = xij(w, 0) + Xz (w)ax

e Invariance with respect to time reversal: I'j;(7,&) = Ii(7,—§)
@ which implies xji(w,q) = xji(w, —q)

o if present, a magnetic field must be inverted as well
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Spatial dispersion

Optical activity

° xijj(w,a) = xij(w, 0) + Xz (w)ax

e Invariance with respect to time reversal: I'j;(7,&) = Ii(7,—§)
@ which implies xji(w,q) = xji(w, —q)

o if present, a magnetic field must be inverted as well

°

recall that xj; is also hermitian: x;; = X;-k,-
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Spatial dispersion

Optical activity

Xij(w, ) = xij(w, 0) + x77(w) g«

Invariance with respect to time reversal: I'j;(7,&) = Ii(7, —§)
which implies xi(w,q) = xji(w, —q)

if present, a magnetic field must be inverted as well

recall that xj; is also hermitian: x;; = X;-k,-

Xﬁ is purely imaginary and antisymmetric in the first two
indexes
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Spatial dispersion

Optical activity

Xij(w, ) = xij(w, 0) + x77(w) g«

Invariance with respect to time reversal: I'j;(7,&) = Ii(7, —§)
which implies xi(w,q) = xji(w, —q)

if present, a magnetic field must be inverted as well

recall that xj; is also hermitian: x;; = X;-k,-

Xﬁ is purely imaginary and antisymmetric in the first two
indexes

o AX7 = i€jk8k with gk = Guq
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Spatial dispersion

Optical activity

° xijj(w,a) = xij(w, 0) + Xz (w)ax

e Invariance with respect to time reversal: I'j;(7,&) = Ii(7,—§)

@ which implies xji(w,q) = xji(w, —q)

o if present, a magnetic field must be inverted as well

e recall that xj; is also hermitian: x;; = X;-k,-

° Xﬁ is purely imaginary and antisymmetric in the first two
indexes

o AX7 = i€jk8k with gk = Guq

@ gyration vector gx depends linearly on the wave vector g
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Spatial dispersion

Optical activity

° xijj(w,a) = xij(w, 0) + Xz (w)ax

e Invariance with respect to time reversal: I'j;(7,&) = Ii(7,—§)

@ which implies xji(w,q) = xji(w, —q)

o if present, a magnetic field must be inverted as well

e recall that xj; is also hermitian: x;; = X;-k,-

° Xﬁ is purely imaginary and antisymmetric in the first two
indexes

o AX7 = i€jk8k with gk = Guq

@ gyration vector gx depends linearly on the wave vector g

@ Gy is a rank 2 pseudo-tensor
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

e x/ = Rjjxj where RRT = RTR =1
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

e x/ = Rjjxj where RRT = RTR =1
o det RRT = (det R)2 =1
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

o x/ = Rjjx; where RRT = RTR = |
o det RRT = (det R)2 =1
@ det R = +1 : proper rotation
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

o x/ = Rjjx; where RRT = RTR = |

o det RRT = (det R)2 =1

@ det R = +1 : proper rotation

@ det R = —1 : space inverions and proper rotation
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

x! = Rjx; where RRT = RTR = |

det RRT = (det R)? =1

det R = +1 : proper rotation

det R = —1 : space inverions and proper rotation
= RimRjn .. Trn...

tensors Tj;. . transform as TU’
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

x! = Rjx; where RRT = RTR = |

det RRT = (det R)? =1

det R = +1 : proper rotation

det R = —1 : space inverions and proper rotation

/
tensors Tj;  transform as T; = RinRjn... Tmn...

...
they are called genuine tensors
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

x! = Rjx; where RRT = RTR = |

det RRT = (det R)? =1

det R = +1 : proper rotation

det R = —1 : space inverions and proper rotation

/
tensors Tj;  transform as T; = RinRjn... Tmn...

...
they are called genuine tensors

pseudo tensors Pj; . transform as
PU’ = (det R) RimRjn - - . Pmn...
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Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

x! = Rjx; where RRT = RTR = |

det RRT = (det R)? =1

det R = +1 : proper rotation

det R = —1 : space inverions and proper rotation

/
tensors Tj;  transform as T; = RinRjn... Tmn...

...
they are called genuine tensors

pseudo tensors Pj; . transform as
PU’ = (det R) RimRjn - - . Pmn...

@ ) is a genuine tensor of rank 2

Peter Hertel Electro- and magnetooptic effects and spatial dispersion



Spatial dispersion

Digression: Genuine and pseudo tensors

o Coordinate transformation x — x’ such that
ds? = dx? + dx3 + dx3 does not change

x! = Rjx; where RRT = RTR = |

det RRT = (det R)? =1

det R = +1 : proper rotation

det R = —1 : space inverions and proper rotation

/
tensors Tj;  transform as T; = RinRjn... Tmn...

...
they are called genuine tensors

pseudo tensors Pj; . transform as
PU’ = (det R) RimRjn - - . Pmn...

djj is a genuine tensor of rank 2

@ €jj is a pseudo tensor of rank 3
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Spatial dispersion

Optical activity (ctd.)

o Axj? = icjkgk with gk = Guqy
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Spatial dispersion

Optical activity (ctd.)

o Axj? = icjkgk with gk = Guqy

A A

@ E; and P; are genuine vectors
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Spatial dispersion

Optical activity (ctd.)

o Axj? = iejjkgk with gk = Guqy
° E,- and IAD,- are genuine vectors
@ hence susceptibility x;i is a genuine tensor of rank 2
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Spatial dispersion

Optical activity (ctd.)

AXF = iejkgr with gk = Guqi

E; and P; are genuine vectors

hence susceptibility x;; is a genuine tensor of rank 2

g must be a pseudo vector
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Spatial dispersion

Optical activity (ctd.)

A = i€ijgr with g = Giq

E,- and IAD,- are genuine vectors

hence susceptibility x;; is a genuine tensor of rank 2
g must be a pseudo vector

g; is a genuine vector
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Spatial dispersion

Optical activity (ctd.)

A = i€ijgr with g = Giq

E,- and IAD,- are genuine vectors

hence susceptibility x;; is a genuine tensor of rank 2
g must be a pseudo vector

g; is a genuine vector

Gy therefore is a rank 2 pseudo tensor
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Spatial dispersion

Optical activity (ctd.)

o Axj? = iejjkgk with gk = Guqy

E,- and IAD,- are genuine vectors

hence susceptibility x;; is a genuine tensor of rank 2
g must be a pseudo vector

g; is a genuine vector

Gy therefore is a rank 2 pseudo tensor

Only materials which have no mirror symmetry show optical
activity
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Spatial dispersion

Optical activity (ctd.)

A = i€ijgr with g = Giq

E,- and IAD,- are genuine vectors

hence susceptibility x;; is a genuine tensor of rank 2
g must be a pseudo vector

g; is a genuine vector

Gy therefore is a rank 2 pseudo tensor

Only materials which have no mirror symmetry show optical
activity
@ Material must distinguish between left and right handed
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Spatial dispersion

Optical activity (ctd.)

A = i€ijgr with g = Giq

E,- and IAD,- are genuine vectors

hence susceptibility x;; is a genuine tensor of rank 2
g must be a pseudo vector

g; is a genuine vector

Gy therefore is a rank 2 pseudo tensor

Only materials which have no mirror symmetry show optical
activity

@ Material must distinguish between left and right handed

@ dextrose, quartz, ...
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Spatial dispersion

Optical activity (ctd.)

A = i€ijgr with g = Giq

E,- and IAD,- are genuine vectors

hence susceptibility x;; is a genuine tensor of rank 2
g must be a pseudo vector

g; is a genuine vector

Gy therefore is a rank 2 pseudo tensor

Only materials which have no mirror symmetry show optical
activity

@ Material must distinguish between left and right handed

@ dextrose, quartz, ...

@ Optically active materials cause a rotation of the polarization
proportional to the sample thickness
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Spatial dispersion

Optical activity (ctd.)

A = i€ijgr with g = Giq

E,- and IAD,- are genuine vectors

hence susceptibility x;; is a genuine tensor of rank 2
g must be a pseudo vector

g; is a genuine vector

Gy therefore is a rank 2 pseudo tensor

Only materials which have no mirror symmetry show optical
activity

@ Material must distinguish between left and right handed

dextrose, quartz, ...

@ Optically active materials cause a rotation of the polarization

proportional to the sample thickness
The effect is reversible, as contrasted with the Faraday effect
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Spatial dispersion

Dextrose

@ dextrose is naturally produced sugar
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Spatial dispersion

Dextrose

@ dextrose is naturally produced sugar

@ glucose (sugar) from greek YA\vkvs=glycys=sweet
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Spatial dispersion

Dextrose

@ dextrose is naturally produced sugar
@ glucose (sugar) from greek YA\vkvs=glycys=sweet

@ dextrose from latin dexter=right
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Spatial dispersion

Dextrose

@ dextrose is naturally produced sugar
@ glucose (sugar) from greek YA\vkvs=glycys=sweet
@ dextrose from latin dexter=right

e artificially produced sugar does not show left/right-handedness
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Spatial dispersion

Dextrose

dextrose is naturally produced sugar

glucose (sugar) from greek Y\vkvs=glycys=sweet

dextrose from latin dexter=right

artificially produced sugar does not show left/right-handedness

biologically produces sugar (dextrose) is optically effective
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Spatial dispersion

Dextrose

dextrose is naturally produced sugar

glucose (sugar) from greek Y\vkvs=glycys=sweet

dextrose from latin dexter=right

artificially produced sugar does not show left/right-handedness
biologically produces sugar (dextrose) is optically effective

quantum mechanically the state ¢; + ¢r has lowest energy

Peter Hertel Electro- and magnetooptic effects and spatial dispersion



Spatial dispersion

Dextrose

dextrose is naturally produced sugar

glucose (sugar) from greek Y\vkvs=glycys=sweet

dextrose from latin dexter=right

artificially produced sugar does not show left/right-handedness
biologically produces sugar (dextrose) is optically effective
quantum mechanically the state ¢; + ¢r has lowest energy

however, transition probability is extremely small
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Spatial dispersion

Dextrose

dextrose is naturally produced sugar

glucose (sugar) from greek Y\vkvs=glycys=sweet

dextrose from latin dexter=right

artificially produced sugar does not show left/right-handedness
biologically produces sugar (dextrose) is optically effective
quantum mechanically the state ¢; + ¢r has lowest energy
however, transition probability is extremely small

molecules ¢ as produced by the plant live a very, very long
time (comparable with the age of the universe)
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Spatial dispersion

Dextrose

dextrose is naturally produced sugar

glucose (sugar) from greek Y\vkvs=glycys=sweet

dextrose from latin dexter=right

artificially produced sugar does not show left/right-handedness
biologically produces sugar (dextrose) is optically effective
quantum mechanically the state ¢; + ¢r has lowest energy
however, transition probability is extremely small

molecules ¢ as produced by the plant live a very, very long
time (comparable with the age of the universe)

@ Nature has no tendency to prefer left to right handedness
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Spatial dispersion

Dextrose

dextrose is naturally produced sugar

glucose (sugar) from greek Y\vkvs=glycys=sweet

dextrose from latin dexter=right

artificially produced sugar does not show left/right-handedness
biologically produces sugar (dextrose) is optically effective
quantum mechanically the state ¢; + ¢r has lowest energy
however, transition probability is extremely small

molecules ¢ as produced by the plant live a very, very long
time (comparable with the age of the universe)

Nature has no tendency to prefer left to right handedness

@ Question: Are all sugar producing plants copies of the first
plant, which randomly decided between left and right?
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Spatial dispersion

@ Quartz is silicon dioxide, SiO»
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Spatial dispersion

@ Quartz is silicon dioxide, SiO»
@ the most common mineral on earth
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Spatial dispersion

@ Quartz is silicon dioxide, SiO»
@ the most common mineral on earth
@ just think of sand
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the most common mineral on earth
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single crystals are either left or right optically active
however, twins are also found

world wide distribution is very close to 1:1 for left:right crystals
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TCP is

P alone not

but only in weak interactions
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read about Lee and Yang:
http://ccreweb.org/documents/parity /parity.html
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I-quartz and d-quartz
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