Coupled Mode Theory

Peter Hertel

University of Osnabrück, Germany

Lecture presented at APS, Nankai University, China

http://www.home.uni-osnabrueck.de/phertel

Spring 2012
• Mode equation
• Helmholtz equation
• Hilbert space
• Coupled waveguides
• Coupled modes
• Random waveguide array
- \(\mathbf{E}(t, x, y, z) = \mathbf{E}(x, y) e^{i\beta z} e^{-i\omega t} \)
- \(k_0 = \omega / c \) vacuum wave number
- propagation constant \(\beta \)
- general mode equation
 \[
 \text{curl curl } \mathbf{E} = k_0^2 \epsilon(x, y) \mathbf{E}
 \]
- the curl operator is
 \[
 \begin{pmatrix}
 0 & -i\beta & \partial_y \\
 i\beta & 0 & -\partial_x \\
 -\partial_y & \partial_x & 0
 \end{pmatrix}
 \]
- apply it twice
 \[
 \begin{pmatrix}
 \beta^2 - \partial^2_y & \partial_x \partial_y & i\beta \partial_x \\
 \partial_x \partial_y & \beta^2 - \partial^2_x & i\beta \partial_y \\
 i\beta \partial_x & i\beta \partial_y & -\partial^2_x - \partial^2_y
 \end{pmatrix}
 \mathbf{E} = k_0^2 \epsilon(x, y) \mathbf{E}
 \]
• problem: β and β^2
• problem: two polarization states, three fields
• divergence of ϵE vanishes
• $-i\beta E_z = \epsilon^{-1}\partial_x \epsilon E_x + \epsilon^{-1}\partial_y \epsilon E_y$
• now the mode equation contains only two fields

\[
\begin{pmatrix}
k_0^2\epsilon + \partial_x \epsilon^{-1}\partial_x \epsilon + \partial_y^2 & \partial_x \epsilon^{-1}\partial_y \epsilon - \partial_x \partial_y \\
\partial_y \epsilon^{-1}\partial_x \epsilon - \partial_y \partial_x & k_0^2\epsilon + \partial_x^2 + \partial_y \epsilon^{-1}\partial_y \epsilon
\end{pmatrix}
\begin{pmatrix}
E_x \\
E_y
\end{pmatrix}
= \beta^2
\begin{pmatrix}
E_x \\
E_y
\end{pmatrix}
\]

• and it is a normal eigenvalue problem!
• analogous form for magnetic fields
Quasi TE modes

- If waveguides are broad: $\partial_y \epsilon \approx \epsilon \partial_y$
- $E_x \approx 0$
- this results in the quasi TE mode equation

$$\{\partial_x^2 + \partial_y^2 + k_0^2 \epsilon(x, y)\} E_y = \beta^2 E_y$$

- Helmholz equation

- with $\partial_y \epsilon \approx \epsilon \partial_y$ and $H_x \approx 0$
- quasi TM mode equation

$$\{\epsilon \partial_x \epsilon^{-1} \partial_x + \partial_y^2 + k_0^2 \epsilon(x, y)\} H_y = \beta^2 H_y$$

- only change is $\epsilon = \epsilon(x, y)$ and additional ∂_y^2
- and: quasi modes have z-components
Hermann von Helmholtz, German physicist, 1821 - 1894; Königsberg, Bonn, Heidelberg, Berlin
• Henceforth we speak about quasi-TE mode
• i. e. there is just one field component $E = E(x, y)$, the 'electric field' or the 'field', for short
• fields can be linearly combined, they form a linear space
• Power is
 \[P = \frac{2\beta}{\omega \mu_0} \int \, dx \, dy \, |E(x, y)|^2 \]
• scalar product $(G, F) = \int \, dx \, dy \, G^*(x, y) \, F(x, y)$
• With this, the linear space of fields $E = E(x, y)$ with finite power transfer becomes a Hilbert space
• The Helholtz operator $H = \partial_x^2 + \partial_y^2 + k_0^2 \epsilon(x, y)$
• is self-adjoint:
 \[(G, HF) = (HG, F) \]
Coupled Mode Theory

Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array

David Hilbert, German mathematician, 1862-1943; Königsberg, Göttingen
Self-adjoint operators A have remarkable properties:
- $A\chi = a\chi$ guarantees that the eigenvalue a is real.
- Denote by χ_1, χ_2, \ldots the normalized eigenvectors.
- They form a Complete OrthoNormal Set (CONS).
- Meaning $(\chi_k, \chi_j) = \delta_{jk}$.
- And $\chi = \sum_j (\chi_j, \chi) \chi_j$ for all χ.
- $HE = \Lambda E$ guarantees that Λ is real.
- Usually, there are only a few modes E_n with positive
 $\Lambda_n = \beta_n^2$.
- They cannot span the entire Hilbert space.
- We should add wave packets of evanescent and radiation
 modes.
- Consider $r = 1, 2, \ldots, N$ individual waveguides
- Such as a coupler or a waveguide array
- The entire system is again a many mode waveguide
- Its modes are supermodes
- If the single waveguides are well separated
 - the supermodes are given by E_r with propagation constants β_r
- However, if E_r and E_s overlap, this will no longer be true
A random waveguide array
Coupled Mode Theory

Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array

Supermodes
Coupled Mode Theory

Peter Hertel

Overview

Mode equation

Helmholtz equation

Hilbert space

Coupled waveguides

Coupled modes

Random waveguide array

Mode expansion
If waveguide r is the only one, it obeys
\[
\left(\frac{1}{k_0^2} \Delta + \epsilon_r \right) E_r = n_r^2 E_r
\]

Supermode is described by
\[
\left(\frac{1}{k_0^2} \Delta + \epsilon \right) E = n^2 E \text{ where } \epsilon(x, y) = \sum_r \epsilon_r(x, y)
\]

bold approximation:

\[
E(x, y) = \sum_r U_r E_r(x, y)
\]

With
\[
M_{sr} = (E_s, \left(\frac{1}{k_0^2} \Delta + \epsilon \right) E_r) \quad \text{and} \quad \Lambda_{sr} = (E_s, E_r)
\]

Solve generalized eigenvalue problem
\[
MU = \Lambda U
\]
Recall
\[M_{sr} = (E_s, \left(\frac{1}{k_0^2} \Delta + \epsilon \right) E_r) \text{ and } \Lambda_{sr} = (E_s, E_r) \]

Because of \((E_r, E_r) = |E_r|^2 = 1\), all diagonal elements of \(\Lambda\) are ones.

However, there are non-diagonal contributions (overlaps).

For a certain \(r\) one may write \(\epsilon = \epsilon_r + \bar{\epsilon}_r\)

where \(\bar{\epsilon}_r\) is the permittivity profile outside waveguide \(r\)

such that we may write
\[M_{sr} = n_r^2 \Lambda_{sr} + (E_s, \bar{\epsilon}_r E_r) \]
Random waveguide array

- RA=rwga_descriptor()
- RA=rwga_single(RA)
- RA=rwga_overlap(RA)
- RA=rwga_dices(RA)
- RA=rwga_super(RA)
- RA=rwga_intensity(RA,MN)
- Anderson localization
Ground mode of a 30×30 random waveguide array. Probability for small core is 0.1.
Finite Difference Method for a super mode.