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Harmonic solutions

• Assume all fields to be of the form

F (t, x, y, z) = F (x, y, z) e
−iωt

• Maxwell’s equation say

curl curlE + k20ε(x, y)E = 0

• For a quasi-TE mode this reduces to{
∂2x + ∂2y + ∂2z + k20ε(x, y)

}
E(x, y, z) = 0

• may be further simplified for plane waves, or modes:

E(x, y, z) = E(x, y) e
iβz

• resulting in the mode equation{
∂2x + ∂2y + k20ε(x, y)

}
E(x, y) = β2E(x, y)

• an eigenvalue problem for the propagation constant β
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Modal approach to propagation

• Discern between cross section parameters x, y and
propagation parameter z

• E(x, y, z) = E(x, y; z) is a field living on the cross section
x, y, it depends on the propagation distance z.

• We have to solve
d2

dz2
E(z) =

{
∂2x + ∂2y + k20ε(x, y)

}
E(z) = HE(z)

• where H denotes the familiar Helmholtz operator, acting
on the cross section coordinates x and y

• With HEj = β2jEj and

E(x, y; 0) =
∑
j

UjEj(x, y)

• we may write

E(x, y; z) =
∑
j

UjEj(x, y) e
iβjz

• which solves the propagation equation and the initial
condition.
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Pros and Cons

• Pros :

• the guided modes Ej and the corresponding propagation
constants βj have to be calculated.

• On a PC, this is usually done well below a minute

• the following propagation procedure is a matter of seconds

• Cons :

• The method does not allow for smooth changes of the
permittivity ε(x, y; z) along the propagation direction z

• such as tapers (profile reformers) or bends

• Only guided modes are taken into account. The method
does not allow for radiation losses.
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Fresnel approximation

• Because propagation is described by

E ′′(z) =
{
∂2x + ∂2y + k20ε(x, y)

}
E(z) = HE(z)

• providing just the initial field E(0) is not sufficient

• simplify the propagation equation to first order

• choose an average refractive index n

• such that for

E(z) = A(z) e
ink0z

• the field A(z) changes slowly with z

• i. e. ||A ′′(z)|| � k0||A ′(z)||
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Fresnel approximation (ctd.)

• Solve

e
−ink0z

{
∂2x + ∂2y +

d2

dz2

}
e

ink0z A(z)

+k20ε(x, y)A(z) = 0

• Neglecting A ′′ gives

• the Fresnel-Equation

−iA ′(z) =
∂2x + ∂2y + k20δε

2nk0
A(z)

• where δε = δε(x, y) = ε(x, y)− n2

• Parabolic approximation

• Paraxial approximation

• If nk0 is the propagation constant of a mode

• A does not vary with z
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Augustain-Jean Fresnel, 1788 - 1827, French engineer and
physicist, member of the French and British Academy of
Science
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Explicit and implicit forward

• Fresnel equation

−iA ′ = PA where P =
∂2x + ∂2y + k20δε(x, y)

2nk0
• is formally solved by

A(z) = e
izP

• For a propagation step h

A(z + h) = e
ihP

A(z)

• Crude approximation

A(z + h) ≈ (I + ihP )A(z)

• Likewise

A(z) = e
−ihP

A(z + h)

• approximated by

A(z + h) = (I − ihP )−1A(z)
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Crank-Nicholson scheme

• Explicit forward is unstable, i. e. halfing h and doubling
the number of steps again and again will not converge

• Implicit forward is always stable. However, each
propagation step requires a linear set of equations to be
solved.

• The accuracy for a finite propagation distance is ∝ h
• Combining both methods leads to a stable scheme with

accuracy ∝ h2

A(z + h/2) = (I + i
hP

2
)A(z) = (I − i

hP

2
2)−1A(z + h)

• that is

A(z + h) =
1 + ihP/2

1− ihP/2
A(z)

• the Crank-Nicholson scheme of beam propagation
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% propagation of a gaussian beam in vacuum

CW=10.0; % computational window

BW=1.0; % Gaussian beam width

LAMBDA=0.633; % helium neon laser

n=1.0; % refractive index of the medium

k0=2*pi/LAMBDA;

NX=128; % points on x axis

HX=CW/(NX-1); % x axis spacing

HZ=5*HX; % propagation step

x=linspace(-0.5*CW,0.5*CW,NX)’;

A=exp(-(x/BW).^2); % initial field

u=0.5i*HZ/(2*n*k0);

main=-2*u*ones(NX,1)/HX^2;

next=u*ones(NX-1,1)/HX^2;

FW=eye(NX)+diag(next,-1)+diag(main,0)+diag(next,1);

BW=eye(NX)-diag(next,-1)-diag(main,0)-diag(next,1);

NZ=100; % number of propagation steps

hist=zeros(NX,NZ); % storage for history

for r=1:NZ

hist(:,r)=abs(A).^2;

A=BW\FW*A;

end;
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Propagation of a Gaussian beam in free space. If it hits the
boundary of the computational window, it will be reflected.
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Transparent boundary conditions

• The line next=u*ones(NX-1,1)/HX^2; assumes that
the field outside the computational window vanishes

• Determine from the field values close to the boundary the
amplitudes of an outgoing and an incoming wave and
suppress the latter

• Ar
j represent the field A(rhz) where j = 1, 2, . . . , Nx.

• Write

e
ikhx =

Ar
N

Ar
N−1

• If the real part of k is positive: fine, an outgoing wave

• If the real part of k is negative, we reset it to zero and
prohibit an incoming wave

• Analogous procedure at the left boundary of the
computational window

• See an implementation of such transparent boundary
conditions
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function new=one_step(HX,u,FW,BW,TINY,old)

NX=size(old,1);

FF=FW; BB=BW;

if abs(old(1))>TINY

k=i/HX*log(old(2)/old(1));

if real(k)<0

k=imag(k);

end;

tbc=exp(i*k*HX)*u/HX^2;

FF(1,1)=FF(1,1)+tbc;

BB(1,1)=BB(1,1)-tbc;

end;

if abs(old(NX))>TINY

k=-i/HX*log(old(NX)/old(NX-1));

if real(k)<0

k=imag(k);

end;

tbc=exp(i*k*HX)*u/HX^2;

FF(NX,NX)=FF(NX,NX)+tbc;

BB(NX,NX)=BB(NX,NX)-tbc;

end;

new=BB\FF*old;
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Propagation of a Gaussian beam in free space. Transparent
boundary conditions have been implemented.
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Propagation along a slab waveguide

• The programs for propagation in free space have to be
modified just slightly

• Recall the Fresnel equation

−iA ′(z) =
∂2x + ∂2y + k20δε

2nk0
• For a planar waveguide

−iA ′(z) =
∂2x + k20δε

2nk0
• So far n = 1 and δε(x) = 0 – free space

• Chose n as the substrate refractive index

• δε(x) only modifies the main diagonal of propagation
matrices

• Inspect a typical example
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A Gaussian beam hits the center of the waveguide. We have
plotted intensities.
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Power remaining in the waveguide. The rest has been radiated
off.
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The center of the Gaussian beam is at the interface between
substrate and film. The insertion loss is obviously larger.
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Summary

• The Crank-Nicholson scheme relies on Fresnel’s
approximation

• It outbeats the explicit forward scheme (being unstable)
and the implicit forward scheme (being stable, but
converging in order h only)

• The Crank-Nicholson scheme is stable one order more
accurate than its competitors

• It must be supplemented by a prescription of what
happens at the boundaries of the computational window

• Hadley’s prescription to suppress incoming waves solves
this convincingly

• Radiation losses can be calculated

• as well as the onset of mode formation
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Coupled Mode Theory

• Applicable for a structure of r = 1, 2, . . . waveguides

• Couplers, waveguide arrays, one and two-dimensional,
random array waveguides

• εr and βr are permittivity and propagation constant of
individual waveguide r

• i. e. solutions

{∂2x + ∂2y + k20εr(x, y)}Er(x, y) = β2rEr(x, y)

• Structure profile

ε(x, y) =
∑
r

εr(x, y)

• Profile outsite waveguide r is

ε̄r(x, y) = ε(x, y)− εr(x, y)
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Coupled Mode Theory (ctd.)

• For simplicity of notation: assume one mode per
waveguide only

• Approximate

(Er, Es) =

∫
dxdy E∗r (x, y)Es(x, y) ≈ δrs

• Expand

A(x, y; z) =
∑
s

Us(z)Es(x, y)

• Insert into Fresnel equation and work out the scalar
product with Es:

−2ink0U
′
r(z) = (β2r − k20n2)Ur(z) + k20

∑
s

CrsUs(z)

• where the matrix of coupling coefficients is

Crs = (Er, ε̄sEs) =

∫
dxdy E∗r (x, y) ε̄s(x, y)Es(x, y)

• System of only few coupled ordinary differential equation
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Initial values

• Denote by E = E(x, y) the incident field at z = 0

• It will be represented by

E(x, y) =
∑
s

Us(0)Es(x, y)

• Therefore

Ur(0) = (Er, E) =

∫
dxdy E∗r (x, y)E(x, y)

• Recall that Er = Er(x, y) is the only guided mode of
waveguide r with propagation constant βr

• Recall the coupled mode equation

−2ink0U
′
r(z) = (β2r − k20n2)Ur(z) + k20

∑
s

CrsUs(z)

• n is a reference refractive which allows to justify the
Fresnel approximation
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Coupled modes: evaluation

• Cons :

• Coupled mode theory inherits the deficiencies of the
quasi-TE and the quasi-TM approximation

• Coupled mode theory for propagation inherits the possible
deficiencies of the Fresnel approximation

• By construction, there is no radiation lass

• Pros :

• From a computational point of view, coupled mode theory
provides a system of only few coupled ordinary

differential equations with well defined initial conditions .

• Therefore, if the structure has regularities, an analytic
solution may be possible.

• Coupled mode results are often much better than expected
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