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Dielectric waveguides are the key components of modern integrated optics. A
region of increased permittivity hinders light from spreading in space.
In section 1 we explain why waves cannot be kept confined unless the medium
is inhomogeneous. We then summarize Maxwell’s equations for the electromag-
netic field and specialize to modes of definite angular frequency.
Planar waveguides are the subject of section 2. Just as light propagating in
free space has two states of polarization, there are also two kinds of modes,
transversal electric or transversal magnetic. We calculate the modes of a graded
index waveguide by the finite difference method and discuss a semi-analytic
approach for slab waveguides.
We next turn, in section 3, to the more realistic case of strip waveguides which
are the integrated optics counterpart to wires and bonds in electronics. Again,
modes are either quasi transversal electric or transversal magnetic. A realistic
rib waveguide is investigated by the finite difference method. A few alternative
methods for calculating the guided modes of strip waveguides are mentioned as
well.
Section 4 is about wave propagation. We derive the Fresnel equation and imple-
ment a finite difference propagation method. A necessarily finite computational
window must be equipped with transparent boundary conditions in order to
prevent spurious reflections. We comment on the method of lines and on the
operator splitting beam propagation method.
Finally, in section 5, some effects of optical anisotropy are discussed, in partic-
ular non-reciprocal propagation which is required for an optical isolator.
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3

1 Basics

We discuss waves and wave packets and show why they have to spread out if
the transmitting medium is homogeneous. Only if the permittivity varies with
location, waves or wave packets may be confined. We recapitulate Maxwell’s
equations for the electromagnetic field and discuss harmonic in time solutions.

1.1 Plane Waves and wave packets

A plane wave is described by

f(t,x) ∝ e
−iωt

e
ik·x

. (1.1)

The wave (1.1) is called plane because, at a particular time t, the surfaces of
constant phase are planes being orthogonal to the wave vector k. f stands for
the field strength which might by the air pressure deviation δp for sound waves,
a component ui of the displacement vector for elastic waves, any component of
the electromagnetic field (E,B), or the amplitude of a particle wave.
In all these cases there are linear field equations which allow to derive a relation
between the angular frequency ω and the wave vector, ω = ω(k). It will be
explained soon why we speak of a dispersion relation.
For sound in air, ω = v|k| is a rather good approximation up to frequencies of
tens of kilohertz. The same applies for longitudinally or transversally polarized
elastic waves. Only for rather high frequency (ultrasound) deviations from a
linear relation between frequency and wave number1 become noticeable.
Light in the infrared, visible, and ultraviolet region, if propagating in matter,
exhibits marked deviations from a linear relationship between ω and k. This
is to be expected since the photon energy, one or a few electron volts, matches
typical energies of atomic physics.
Free particles of mass m are characterized2 by

ω = ~
2mk2 (1.2)

which is very non-linear.
Now, plane waves are an idealization. They are there everywhere and always.
In fact, waves are excited and more or less localized. Realistic waves consist of
packets as described by

f(t,x) =
∫ d3k

(2π)3 φ(k) e
−iωt

e
ik·x

. (1.3)

Note that∫
d3x |f(t,x)|2 =

∫ d3k

(2π)3 |φ(k)|2 (1.4)

1magnitude k = |k| of the wave vector
2~ is Planck’s constant
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does not depend on time. We interpret it as the wave’s energy and normalize
to unity.
The wave packet is located at

〈X〉 t =
∫

d3x x |f(t,x)|2 (1.5)

which is equal to

〈X〉 t =
∫ d3k

(2π)3 φ
∗(k) e

iωt
i∇k φ(k) e

−iωt
, (1.6)

or

〈X〉 t = 〈X〉 0 + t

∫ d3k

(2π)3 |φ(k)|2 ∇kω . (1.7)

Hence, the wave packet moves with constant velocity

〈〈∇kω〉〉 =
∫ d3k

(2π)3 |φ(k)|2 ∇kω . (1.8)

In the same way we may define 〈X2〉 t. This expectation value turns out to be
quadratic in t, the leading term being

〈X2〉 t = t2 〈〈(∇kω)2〉〉 + . . . . (1.9)

Thus, for large times, the root-mean-square extension of the wave increases with
time like

δX(t) =
√
〈X2〉 t − 〈X〉 2

t = t
√
〈〈(∇kω)2〉〉 − 〈〈∇kω〉〉 2 + . . . . (1.10)

Wave packets spread out more and more. There are two reasons. One is that the
packet is made up of waves travelling in different directions. The other reason is
that even for parallel wave vectors angular frequency and wave number are not
proportional. The spreading of wave packets is unavoidable—in a homogeneous
medium.

1.2 Maxwell’s equations

Maxwell’s equations in matter read

divD = ρ , divB = 0 (1.11)

and

curlH = j + Ḋ , curlE = −Ḃ . (1.12)
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ρ is the charge density, j the current density. D, B, H and E stand for the
dielectric displacement, induction, magnetic and electric field strength, respec-
tively. They are fields, i. e. depend on time t and location x. The divergence of
a vector field F is divF = ∇·F , the curl is defined by curlF = ∇×F , and
Ḟ = ∂tF denotes the partial derivative with respect to time. ∇ = (∂x, ∂y, ∂z)
is the nabla operator.
The conservation of charge is expressed by the continuity equation

ρ̇+ div j = 0 , (1.13)

a consequence of Maxwell’s equations.
In a linear medium, which is characterized by D ∝ E and B ∝H, there is an
energy density

η = E ·D +H ·B
2 (1.14)

and an energy current density

S = E×H (1.15)

to be associated with the electromagnetic field. The following balance equation
holds true:

η̇ + divS = −j ·E . (1.16)

S is Poynting’s vector, and −j ·E is Joule’s heat. Equation (1.15) is known as
Poynting’s theorem. Like the continuity equation (1.13), it is a consequence of
Maxwell’s equations.
At interfaces between two homogeneous media the following field components
are continuous:

• the normal component B⊥ of the induction

• the normal component D⊥ of the dielectric displacement, if there is no
surface charge

• both tangential components E‖ of the electric field strength, and

• both tangential components H‖ of the magnetic field strength, if there is
no surface current.

1.3 Monochromatic waves and modes

Assume f = f(t,x) any of the electromagnetic field components. We may
decompose it into its frequency components:

f(t,x) =
∫ dω

2π e
−iωt

f̂(ω,x) . (1.17)
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Now, f = f(t,x) is a real field, and this implies

f̂∗(−ω,x) = f̂(ω,x) . (1.18)

Therefore, we may write

f(t,x) =
∫ ∞

0

dω
2π e

−iωt
f̂(ω,x) + cc , (1.19)

where cc denotes the complex conjugate of the term to the left. Hence, only
positive frequencies matter. We will always bear in mind that the complex
conjugate has to be added, but usually omit cc.
In the following we pick out one component with a well-defined positive angular
frequency ω. In f̂(ω,x) we drop the ˆ indicator (for Fourier transform), and do
not mention ω in the list of arguments.
We investigate a dielectric medium without charges and currents. This situation
is characterized by

ρ = 0 , j = 0 , D = εε0E and B = µ0H . (1.20)

Maxwell’s equations for the electric and magnetic field strengths now become

div εE = 0 , divH = 0 (1.21)

and

curlH = −iωε0εE , curlE = iωµ0H . (1.22)

Note that the permittivity ε = ε(x) may depend on location, but not on time.
The two first order equations (1.22) are inserted into each other such that a
second order equation results:

curl curlE = k2
0εE , (1.23)

where k0 = ω/c and c = 1/√ε0µ0.
An alternative version is

curl ε−1 curlH = k2
0H . (1.24)

Let us define the following scalar product for vector fields:

(b,a) =
∫

d3x b∗(x)·a(x) . (1.25)

It is a simple exercise to show that

(b, curl a) = ( curl b,a) (1.26)
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holds true for square integrable3 and differentiable vector fields a and b. The
curl operator is Hermitian. The ( curl curl ) operator in (1.23), the square of
a Hermitian operator, is therefore non-negative. This is in agreement with k2

0ε
being non-negative.
Any solution of (1.23) for k2

0 6= 0 obeys (1.11). This is evident for the displace-
ment field if the divergence of (1.23) is worked out. However, because of B ∝ E,
the divergence of the induction field vanishes as well.
The curl is a differentiation operator to be applied to vector fields, and we think
of ε = ε(x) as a multiplication operator. (1.23) defines a generalized eigenvalue
problem, the eigenvalue being k2

0. (1.24) is a normal eigenvalue problem.
Given a permittivity profile, the allowed light frequency values ω = ck0 may be
calculated. (1.23) or (1.24) describe a resonator. If there is a three-dimensional
region Ω of increased permittivity, light of certain frequencies may be stored
in it. We will not discuss this here. Instead, we shall study structures where
the permittivity varies along one or two dimensions only. ε = ε(x) describes a
planar waveguide, ε = ε(x, y) a strip waveguide.
For equations which are linear in the fields we may omit the cc reminder. For
quadratic expressions we have to be more careful. For example, the Poynting
vector is given by

S = (E +E∗)×(H +H∗) (1.27)

which are altogether four contributions. Two of them oscillate with angular
frequency 2ω and −2ω, they should bed dropped. What remains is the zero
frequency, or time averaged contribution

S = 2 ReE×H∗ . (1.28)

3f is square integrable if (f , f) <∞
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2 Planar Waveguides

A planar waveguide is characterized by a permittivity profile ε = ε(x) which does
not depend on y or z. The wave vector lies in the (y, z) plane, and we choose the
z direction without loss of generality. All components of the electromagnetic
field are shaped according to

F (t, x, y, z) = F (x) e
−iωt

e
iβz

. (2.1)

Just as a free photon has two states of polarization, there are two differently
polarizes modes, TE and TM. It is the Electric or Magnetic field strength,
respectively, which is Transversal, i. e. orthogonal to the waveguide normal as
well as to the propagation direction.
We study two different kinds of planar waveguides. A graded index waveguide is
characterized by a smoothly varying permittivity profile while a slab waveguides
consists of one ore more homogeneous films of different optical properties.

2.1 TE modes

The electromagnetic field of a TE mode is

E =

 0
E
0

 and H = 1
ωµ0

 −βE0
−iE ′

 . (2.2)

The electric field strength E = E(x) has to obey4

1
k2

0
E ′′ + εE = εeffE . (2.3)

This is an eigenvalue problem, the eigenvalue being the effective permittivity
εeff = (β/k0)2. For a given light source frequency ω, the mode equation (2.3)
allows to calculate the possible propagation constants β.
According to (1.28) and (2.2) the energy current density is

S = 2β
ωµ0
|E(x)|2 . (2.4)

By integrating over x we obtain the power flux per lateral unit length:

dP
dy = 2β

ωµ0

∫
dx |E(x)|2 . (2.5)

It is therefore natural to define the following scalar product:

(g, f) =
∫

dx g∗(x) f(x) . (2.6)

4neff = β/k0 is called an effective index, its square εeff = n2
eff = β2/k2

0 is an effective
permittivity.



2.2 TM modes 9

Note that the mode operator5

LTE = 1
k2

0

d2

dx2 + ε (2.7)

is self-adjoint with respect to the scalar product (2.6). Hence, the εeff are real.
Since the second derivative operator is negative6, the eigenvalues εeff are smaller
than the largest permittivity. A guided mode is characterized by (E,E) < ∞,
by a finite total power flux per unit lateral length. Therefore, εeff must be larger
than the permittivities at infinity. Otherwise the solutions would be of sine type
at infinity and could not be normalized.
All continuity requirements are fulfilled if x→ E(x) and x→ E ′(x) are contin-
uous.

2.2 TM modes

The electromagnetic field of a TM mode is

E = 1
ωε0ε

 βH
0

iH ′

 and H =

 0
H
0

 . (2.8)

The magnetic field strength has to obey the following mode equation7

1
k2

0
ε
d
dxε

−1 d
dxH + εH = εeffH . (2.9)

This is again an eigenvalue problem, the eigenvalue being εeff .
(2.8) implies the following expression for the power flux per lateral unit length:

P = β

ωε0

∫
dx 1

ε(x) |H(x)|2 . (2.10)

It is therefore natural to define the scalar product

(g, f) =
∫

dx 1
ε(x) g

∗(x)f(x) . (2.11)

It is not difficult to show that the TM mode operator

LTM = 1
k2

0
ε
d
dxε

−1 d
dx + ε (2.12)

is self-adjoint with respect to the scalar product (2.11), hence its eigenvalues
are real and the eigenvectors are orthogonal in the sense of (2.11).

5LTE is dimensionless which is required for numerical solutions.
6A is negative if (f,Af) ≤ 0 for all f , here: (f, f ′′) = −(f ′, f ′) ≤ 0.
7This is just one of many forms
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Again, as for TE modes, the differential operator part of (2.12) is negative, since
(f, f ′′) = −(f ′, f ′) holds true. Therefore, the allowed effective permittivities
are smaller than the maximum permittivity and larger than the permittivity at
infinity.
All continuity requirements are fulfilled if x → H(x) and x → H ′(x)/ε(x) are
continuous.

2.3 Graded index waveguides

Think of a substrate like glass or lithium niobate. Its surface may be treated by
various processes in order to modify the permittivity at the surface, such as in-
diffusion or exchange of ions. Lithium niobate may be covered by a thin titanium
layer which is then allowed to diffuse into the substrate at high temperatures.
Another procedure is to apply benzoic acid which replaces a certain amount of
lithium ions by protons. With glass, one can offer silver ions which are drawn
into the substrate by an electric field.
In any case, a permittivity profile is produced which exceeds the substrate value
by ∆ε(x), where x is the depth below the surface at x = 0. The region x < 0
is the cover, usually vacuum or air, or a protective substance. Its permittivity
is denoted by εc. The substrate permittivity εs is larger then εc. Since the
concentration of in-diffused ions follows a Gaussian and since, for not too high
concentrations, the permittivity change is proportional to the concentration of
in-diffused ions, we assume

ε(x) =
{

εc for x < 0

εs + ∆ε e
−(x/W )2

for x > 0
. (2.13)

w denotes the width of the permittivity increase, and ∆ε the maximum per-
mittivity enhancement. (2.13) is a rather good approximation for titanium
in-diffused planar waveguides.
The standard procedure to solve such an eigenvalue problem is to approximate
the infinite x axis R by a finite number xj = xmin, xmin + h, . . . , xmax of repre-
sentative points. The field values Fj = F (xj) form a vector. A linear operator
is represented by a square matrix. Here we describe the method of finite differ-
ences: infinitesimals dx are approximated by finite differences, h in our cases.
The second derivative in particular is represented by

f ′′(xj) = f ′′j = fj+1 − 2fj + fj−1

h2 , (2.14)

which can be translated into a matrix to be applied to a vector f . This matrix
has a diagonal −2/h2 and adjacent diagonals 1/h2. A multiplication operator,
such as f → εf is represented by a diagonal matrix with elements εj = ε(xj).
Here is a realization.
Our MATLAB program begins by defining constants. All lengths are measured in
microns.

1 % this file is gi_wg.m
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2 LAMBDA=0.6328;
3 k0=2*pi/LAMBDA;
4 EC=1.000;
5 ES=4.800;
6 ED=0.045;
7 W=4.00;

The wavelength is that of a cheap helium-neon laser, the cover is air, the sub-
strate permittivity is that of lithium niobate, and the permittivity profile pa-
rameters ∆ε (ED) and W are realistic.
We next represent the real axis by a finite set of representative values. The run
from −1 to 4W , in steps of h.

8 xmin=-1.0;
9 xmax=4*W;

10 h=0.1;
11 x=(xmin:h:xmax)’;
12 dim=size(x,1);

The next line defines the permittivity profile:

13 prm=(x<0).*EC+(x>=0).*(ES+ED*exp(-(x/W).^2));

The following piece of code sets up the mode operator L:

14 next=ones(dim-1,1)/h^2/k0^2;
15 main=-2.0*ones(dim,1)/h^2/k0^2+prm;
16 L=diag(next,-1)+diag(main,0)+diag(next,1);

Its eigenvectors and eigenvalues are calculated by

17 [evec, eval]=eig(L);

Only eigenvectors with eigenvalues (β/k0)2 = εeff > εs make sense. We isolate
and plot them:

18 eff_eps=diag(eval);
19 guided=evec(:,eff_eps>ES);
20 plot(x,guided);

Figure 1 shows the output. There are three guided TE modes which are indexed
by TE0, TE1, and TE2. The basic mode, the one with the largest propagation
constant, has no node. The next one has one node, and so forth.
On my laptop computer the above program requires 0.3 s to build up the 171×
171 matrix, to diagonalize it, and to produce the graphical representation. It is
simply not worthwhile to improve it.
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Figure 1: Electric field strength of guided modes vs. depth below surface
(microns) of a graded index waveguides. See the MATLAB program for
waveguide parameters.

2.4 Slab waveguides

A slab waveguide is made up of a substrate carrying one ore more homogeneous
films of enhanced permittivity. On top is a cover layer. Here we study a very
simple device. There is just one film with permittivity εf > εs of thickness w.
The permittivity profile is

ε(x) =

 εs for x < 0
εf for 0 < x < w
εc for w < x

. (2.15)

y

x

substrate, εs

film, εf

cover, εc

w

Figure 2: Layout of a slab waveguide with one film of enhanced per-
mittivity.

Formally, the TE and the TM mode operators, (2.7) and (2.12) respectively,
coincide for such a stepwise constant profile. However since the continuity re-
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quirements differ, the propagation constants and the modal fields as well are
different for TE and TM modes.
Let us define

κc = k0
√
εeff − εc , κs = k0

√
εeff − εs and kf = k0

√
εf − εeff . (2.16)

These expressions are positive as long as we insist on εc, εs < εeff < εf .
In the substrate region, the mode equation has two fundamental solutions,
namely E ∝ ± exp(κsx). We chose the positive sign in order to guarantee
decay at x→ −∞.
For the TE mode, the field and its derivative have to be continuous at interfaces
between different materials. The solutions in the film region is c cos(kfx) +
s sin(kfx). We therefore have to determine the amplitudes c and s such that

1 = c and κs = skf (2.17)

hold true at the interface (x = 0) between substrate and film, therefore

E ∝ cos kfx+ κs
kf

sin kfx for 0 < x < w . (2.18)

In the cover x > w the field is a linear combination of two exponential functions,
namely E ∝ a exp(−κcx) + b exp(−κcx). The continuity requirements for TE
modes at x = w are

cos kfw + κs
kf

sin kfw = a e
−κcw

+ b e
κcw

(2.19)

and

kf(− sin kfw + κs
kf

cos kfw) = κc(−a e
−κcw

+ b e
κcw

) . (2.20)

The condition for a guided mode reads b = 0. There must not be an exploding
contribution. (2.19) and (2.20) are compatible only if

cot kfw = k2
f − κsκc

kf(κs + κc)
(2.21)

holds true.
An analogous calculation for TM modes results in

cot kfw = k̄2
f − κ̄sκ̄c

k̄f(κ̄s + κ̄c)
(2.22)

where κ̄c = κc/εc, κ̄s = κs/εs and k̄f = kf/εf .
Note that the right hand side of (2.22) is smaller than its TE counterpart.
Therefore, the propagation constants of TM modes lie below the corresponding
TE values.
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Figure 3: Graphical representation of (2.21) and (2.22). The cotangent
as well as the right hand sides are plotted vs. effective index neff . The
film (refractive index 1.52, thickness 1.8 microns) is deposited on a glass
substrate (refractive index 1.49) and covered by air. The simulation is
for a helium-neon laser. There are two guides TE and two guided TM
modes.

Formulae (2.21) or (2.22) allow for an inverse procedure. Assume that at least
two TE modes are guided. One can than, for a guessed film refractive index
nf , solve (2.21) for the film thickness w. For each mode i, a film thickness wi
results, but they will coincide only if the guessed film refractive index is correct.
If there are more than two modes, the root mean square deviation of calculated
film thicknesses must be minimized. Applying the same procedure to TM modes
should result in the same film parameters.
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3 Strip Waveguides

A linear, or strip waveguide is characterizes by a permittivity profile depending
on the cross section coordinates, ε = ε(x, y). Strip waveguides confine light in
a cross section, they are the counterparts of wires for electric currents. Un-
like wires, strip waveguides must be rather straight. If the bending radius, as
compared with the waveguide cross section, becomes too small, then power is
radiated off or reflected. The latter phenomenon is well known for microwave
guides.
Strip waveguides may be produced by depositing on a substrate a thin film of
higher permittivity and removing it apart from a small rib. This is the most
common technique. On lithium niobate a very thin film of titanium is deposited
which, by common structuring procedures, is removed up to a small rib which is
then in-diffused. Thereby, a smooth permittivity profile ε = ε(x, y) is generated.
We look for solutions of Maxwell’s equations of the following form:

F (t, x, y, z) = F (x, y) e
−iωt

e
iβz

. (3.1)

F may be any component of the electromagnetic field. The mode equation now
is a system of coupled partial differential equations.

3.1 Quasi TE and TM modes

Recall the general mode equation

curl curlE = k2
0εE . (3.2)

The curl operator is now

curl =

 0 −iβ ∂y
iβ 0 −∂x
−∂y ∂x 0

 . (3.3)

Applying it twice results in β2 − ∂2
y ∂x∂y iβ∂x

∂x∂y β2 − ∂x∂x iβ∂y
iβ∂x iβ∂y −∂2

x − ∂y∂y

E = k2
0εE . (3.4)

Now, this is a complicated coupled system of partial differential equations. First,
because it is redundant: there are three field components, but only two polar-
ization states. Second, because the searched for propagation constant β appears
linearly and quadratic, so (3.4) is not a proper eigenvalue problem.
Applying the divergence operator results in zero. We therefore may express the
z-component of the electric field strength as

−iβEz = ε−1∂xεEx + ε−1∂yεEy . (3.5)
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Inserting this into (3.4) gives(
k2

0ε+ ∂xε
−1∂xε+ ∂2

y ∂xε
−1∂yε− ∂x∂y

∂yε
−1∂xε− ∂y∂x k2

0ε+ ∂2
x + ∂yε

−1∂yε

)(
Ex
Ey

)
= β2

(
Ex
Ey

)
. (3.6)

This is now a proper eigenvalue problem for β2.
In most cases the waveguide is sufficiently broad such that ε∂y ≈ ∂yε is a good
approximation. If we set Ex ≈ 0 and solve

(∂2
x + ∂2

y + k2
0ε)Ey = β2Ey (3.7)

we have found an approximate solution. It is called a quasi TE mode since
the normal component of the electrical field strength vanishes, at least approx-
imately. (3.7) is the well known Helmholtz equation.
The counterpart is a quasi TM mode. It is derived from the alternative wave
equation(

k2
0ε+ ∂2

x + ε∂yε
−1∂y ∂x∂y − ε∂yε−1∂x

∂y∂x − ε∂xε−1∂y k2
0ε+ ε∂xε

−1∂x + ∂2
y

)(
Hx

Hy

)
= β2

(
Hx

Hy

)
. (3.8)

(3.8) results from (1.27) by inserting the mode form (3.1) and eliminating Hz

by making use of ∂xHx + ∂yHy + iβHz = 0.
Assuming again ε∂y ≈ ∂yε and setting Hx ≈ 0 results in

(ε∂xε−1∂x + ∂2
y + k2

0ε)Hy = β2Hy , (3.9)

a generalized Helmholtz equation.
Compare these results with the mode equations for planar waveguides. Now the
permittivity profile and the mode fields depend on the cross section coordinates
x and y. In quasi TE and TM approximation the only change is the additional
∂2
y operator.

3.2 Finite difference method

Let us work out a simple example. We want to find out the first two guided
TE modes of a rib waveguide. In order to keep things as simple as possible we
refrain from discussing continuity requirements at interfaces between different
media, we simply smooth out permittivities there.
We choose a computational window the boundaries of which imitate infin-
ity. The field has to vanish there. The cross section is represented by points
(xi, yj) = (ihx, jhy) within the computational window.
The first step is to setup the permittivity profile. We describe a yttrium iron
garnet as substrate and a modified garnet as rib. All lengths are in microns.

1 % this file is rib_wg.m
2 EC=1.00; % cover permittivity
3 ES=3.80; % substrate permittivity
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4 ER=5.20; % rib permittivity
5 NX=50;
6 NY=80;
7 % lengths are in micrometers
8 x=linspace(0,2.5,NX);
9 y=linspace(0,4.0,NY);

10 xlo=1.5; xhi=2.0;
11 ylo=1.5; yhi=2.5;
12 [X,Y]=meshgrid(x,y);
13 RIB=(X>xlo)&(X<xhi)&(Y>ylo)&(Y<yhi);
14 SUB=(X<=xlo);
15 COV=(X>=0)&~RIB;
16 prm=ES*SUB+ER*RIB+EC*COV;
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Figure 4: The computational window and the permittivity profile of our
example.

The waveguide is operated with infrared light:

17 LAMBDA=1.500; % infrared light
18 k0=2*pi/LAMBDA;

A subprogram helmholtz.m establishes the sparse matrix H to be diagonalized
which is achieved by eigs. The first argument is the sparse matrix, the second
denotes the number of desired eigenvalues and eigenvectors, the third indicates
that the largest algebraic eigenvalues are searched for. The diagonalized matrix
(d, 2×2) and a matrix of column eigenvectors (u, NX*NY×2) is returned.

19 HX=x(2)-x(1);
20 HY=y(2)-y(1);
21 H=helmholtz(HX,HY,k0*k0*prm);
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22 [u,d]=eigs(H,2,’la’);
23 mode1=reshape(u(:,1),NX,NY);
24 mode2=reshape(u(:,2),NX,NY);

Note that each mesh index pair (i, j) is one running index n. Therefore, the re-
sulting eigenvectors mode1 and mode2 have to be reshaped to the computational
window.
And here comes the code for establishing the Helmholtz operator H = ∆ +
d(x, y). The two dimensional Laplacian ∆ = ∂2

x + ∂2
y is represented by adding

the expressions for the second derivatives, with possibly different spacing at the
two dimensions. In general, indices n, n − 1, n + 1, n − Nx and n + Nx are
linked by non-vanishing entries. This does not apply at the borders where the
links must be set to zero.

1 % this file is helmholtz.m
2 function H=helmholtz(HX,HY,d)
3 [NX,NY]=size(d’);
4 N=NX*NY;
5 ihx2=1/HX/HX; ihy2=1/HY/HY;
6 md=-2*(ihx2+ihy2)*ones(N,1)+reshape(d’,NX*NY,1);
7 xd=ihx2*ones(N,1);
8 yd=ihy2*ones(N,1);
9 H=spdiags([yd,xd,md,xd,yd],[-NX,-1,0,1,NX],N,N);

10 for n=NX:NX:N-NX
11 H(n,n+1)=0;
12 H(n+1,n)=0;
13 end;

Note that the device is symmetric with respect to reflection at the x-axis. The
lowest order mode is also symmetric while the first excited mode is antisymmet-
ric.
In our case we have to diagonalize a 2950 × 2950 matrix which would require
72 MB of storage. However, most entries vanish, the matrix is sparsely pop-
ulated. In our case there are only 14532 non-vanishing entries. It is therefore
advisable to store the matrix as a list of index pairs and values of its non-
vanishing entries.
Diagonalizing such a spare matrix is virtually impossible since the matrix of
eigenvectors is not sparse. Therefore, only a few eigenvectors closest to a value
σ are calculated by an iterative algorithm. In our case, we have specified that
the two largest eigenvalues are to be worked out.
Sparse matrix technology is essential for solving partial differential equations.

3.3 Various other methods

The method of finite differences is simple to program. However, it is almost
always only the second best choice. One of the disadvantages is that the finite
difference method is simple only if the mesh is equally spaced. Although the
field changes most rapidly within the rib region, the computational window
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Figure 5: Ground and first excited TE mode of a typical rib waveguide.

should be large enough so that E = 0 at the boundary is a good approximation
for E(x, y) → 0 with |x|, |y| → ∞ (note that the field vanishes exponentially
towards infinity).

3.3.1 Galerkin methods

Consider a region Ω and functions on it.

(g, f) =
∫

Ω
dxdy g∗(x, y)f(x, y) (3.10)

is a scalar product which defines a Hilbert space H. We look for solutions of
the Helmholtz equation

(∂2
x + ∂2

y + u)f = Λf (3.11)

with Dirichlet boundary conditions f = 0 on ∂Ω. This problem is equivalent to
demanding

−(∂xg, ∂xf)− (∂yg, ∂yf) + (g, uf) = Λ(g, f) (3.12)
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for all g ∈ H. (3.13) is the weak form of the partial differential equation. Only
first derivatives are involved.
We choose a set of square integrable expansion functions f1, f2, . . . with fj = 0
on ∂Ω. We select another set of square integrable test functions g1, g2, . . .. Now

H = ΛD (3.13)

has to be solved where Hji = −(∂xgj , ∂xfi)− (∂ygj , ∂yfi) + (gj , ufi) and Dji =
(gj , fi).
The Galerkin approximation method consists in choosing only a finite number
N of expansion and test functions. Then (3.13) is an ordinary (generalized)
eigenvalue problem. It becomes particularly simple if the set of expansion and
test functions are the same and if they are normalized and mutually orthogonal
such that Dij = δij .

Trigonometric functions One may choose products sin(kax) sin(kby) func-
tions. They can be differentiated and integrated analytically, and by choosing
proper k values, the boundary conditions on a rectangle may be met easily.

Finite element method This is today’s method of choice. Ω is divided into
triangles. Each interior points is the corner of two or more triangles. A tent
functions is continuous, assigns the value 1 to the interior points, is linear in the
adjacent triangles, and vanishes outside of them. There is one tent function for
each interior point. Such tent functions are easy to construct and to differenti-
ate. As opposed to trigonometric functions, they are localized. If a = 1, 2, . . .
enumerates the interior points (xa, ya) and if ta(x, y) are the corresponding tent
functions, then the expansion

f(x, y) =
∑

φata(x, y) (3.14)

guarantees f(xa, ya) = φa. Put otherwise, the field values at the interior points
are the coefficients of a decomposition into tent functions.
In most cases, the set of tent functions serve as expansion as well as test func-
tions.
There are software packages which provide for the triangulization of arbitrary
regions, which set up the required matrices and which allow for refinements of
the triangulization. The matrices involved are sparse. It is beyond the scope of
this lecture series to introduce a finite element tool package.

3.3.2 Method of lines

The method of finite differences consists in covering the computational window
by Nx × Ny representative points and approximating differential operators by
finite differences. In many cases the computational windows may be covered by
straight lines, Ny say. The field is no longer represented by Nx ×Ny variables,
but by Ny functions fi = fi(x), for i = 1, 2, . . . , Ny. We thus have approxi-
mated the partial differential equation by a finite system of ordinary differential
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equations which in many cases can be solved quasi-analytically. The method of
line, if applicable, is usually the most precise method although more difficult to
program than the finite difference method.

3.3.3 Collocation methods

An interesting approach is to expand the searched for solution into products of
orthogonal functions which can be differentiated analytically. At suitably chosen
points the partial differential equation is solved exactly which gives rise to lin-
ear equations for the expansion coefficients. In particular, Gauss-Hermite func-
tions have been tried which are Gaussians multiplied by polynomials (harmonic
oscillator eigenfunctions). The charm of such an expansion is that solutions
automatically vanish rapidly at infinity, as they should.
However, there is a serious flaw. Orthogonal polynomials necessarily have co-
efficients of alternating sign. The small sum is the result of an almost total
cancellation of large contributions, and by a rule of thumb, not more than
60 terms can be summed before running into serious rounding error problems.
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4 Propagation

So far we have discussed guided modes. They have definite propagation con-
stants and are either TE or TM polarized. In many cases, however, mode
analysis is not sufficient, either because the structure under study is not z-
homogeneous or because energy is radiated off. In this section we want to
describe the propagation of a beam. For simplicity, the scalar equation of a
quasi TE polarized wave is discussed.

4.1 Fresnel equation

We relax the requirement that the field is a plane wave with respect to propa-
gation along the z axis. Instead we write

E(t, x, y, z) = e
−iωt

e
ink0z

E(x, y; z) . (4.1)

β = nk0 is the carrier spatial frequency, it should be chosen such that E(x, y; z)
depends as weakly as possible on the propagation coordinate z. Put otherwise:
we discuss situations where light is almost a mode travelling in z direction.
We have to solve the following wave equations8:

e
−ink0z

(∂2
x + ∂2

y + d2

dz2 ) e
ink0z

E(z) + k2
0εE(z) = 0 . (4.2)

Because the fields E(z) are assumed to depend but weakly on z, we neglect its
second derivative. The result is

−iE ′(z) = P E(z) where P =
∂2
x + ∂2

y − k2
0 δε

2nk0
, (4.3)

the well-known Fresnel equation, with δε(x, y) = ε(x, y)− n2. P is an operator
acting on fields x, y → f(x, y).
(4.3) is not of second, but of first order with respect to propagation: by insisting
on a weak z-dependency of E(z) we have singled out the forward propagating
beam.
The Fresnel equation describes the propagation of a beam well provided n is
chosen properly, namely such that

||E ′′(z)|| � k0||E ′(z)|| (4.4)

holds true9.
Note that in a homogeneous medium E(x, y; z) = A is a solution if n2 = ε. This
describes a plane wave travelling in z direction.
In the following subsections we discuss various methods how to solve the Fresnel
equation.

8x, y → E(x, y; z) is regarded as a family of fields being parameterized by z
9The norm of a field is defined by ||f ||2 =

∫
dxdy |f(x, y)|2
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4.2 Finite differences

Let us assume that ε = ε(x, y) does not depend on the propagation coordinate z.
In this case (4.3) is formally solved by

E(z) = e
−i zP

E(0) (4.5)

or, discussing a propagation step h,

E(z + h) = e
−ihP

E(z) . (4.6)

A very crude approximation is

E(z + h) = (I − ihP )E(z) . (4.7)

Likewise, one may write

e
ihP

E(z + h) = E(z) (4.8)

and approximate by

E(z + h) = (I + ihP )−1E(z) . (4.9)

We assume that the operator P is also represented by a finite difference scheme
on the cross section x, y. It turns out that propagating forward in time by
(4.7) is unstable. Sending all propagation steps to zero so that more and more
propagation steps are required does not converge. Propagating backward in
time by (4.9) is more cumbersome because a system of linear equations has to
be solved, however, the method is stable. Both are of first order in h.
A combination of the two methods is one order more accurate and stable as
well. We set

E(z + h

2 ) = (I − ihP
2 )E(z) = (I + ihP

2 )E(z + h) (4.10)

and obtain

E(z + h) = (I + ihP
2 )−1 (I − ihP

2 )E(z) , (4.11)

the Crank-Nicholson scheme.
Let us try out the Crank-Nicholson scheme by propagating a Gaussian beam in
empty space.

1 % this file is refl_bc.m
2 CW=10.0; % computational window
3 BW=1.0; % Gaussian beam width
4 LAMBDA=0.633; % helium neon laser
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5 n=1.0; % refractive index of the medium
6 k0=2*pi/LAMBDA;
7 NX=128; % points on x axis
8 HX=CW/(NX-1); % x axis spacing
9 HZ=5*HX; % propagation step

10 x=linspace(-0.5*CW,0.5*CW,NX)’;
11 E=exp(-(x/BW).^2); % initial field
12 u=0.5i*HZ/(2*n*k0);
13 main=-2*u*ones(NX,1)/HX^2;
14 next=u*ones(NX-1,1)/HX^2;
15 % step forward
16 FW=eye(NX)+diag(next,-1)+diag(main,0)+diag(next,1);
17 % step backward
18 BW=eye(NX)-diag(next,-1)-diag(main,0)-diag(next,1);
19 NZ=100; % number of propagation steps
20 hist=zeros(NX,NZ); % storage for history
21 for r=1:NZ
22 hist(:,r)=abs(E).^2;
23 E=BW\FW*E;
24 end;
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Figure 6: Propagation of a Gaussian beam by the Crank-Nicholson finite
difference scheme. The field was silently assumed to vanish outside the
computational window.

4.3 Transparent boundary conditions

Figure 6 shows the surprising result of propagating a Gaussian beam in free
space. The boundary of the computational window obviously reflects the field,
and we see a superposition of the propagated and multiply reflected field.
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The reason for this odd behaviour is easily discovered. When constructing the
Laplacian we did not care for the second derivative at the boundary. The first
row of P is proportional to −2, 1, 0, . . ., the second row is 1,−2, 1, 0, . . ., the
third reads 0, 1,−2, 1, 0, . . ., etc. The first row represents the second derivative
at the boundary only if the field outside the computational window vanishes as if
the computational window were surrounded by an ideally conducting material,
which is not intended.
It was customary to implement absorbing boundary conditions. Outside the
computational window an absorbing material was simulated. If absorption sets
in too rapidly, it caused reflection. If it sets in too gently, the computational
window became too large. Hence, all beam propagation calculations had to be
hand-tuned.
Hadley10 in 1992 devised a clever algorithm how to avoid these nasty reflections
and the computational window overhead.
The idea is rather simple. Determine from the field values close to the boundary
the components of an outgoing and and incoming wave and suppress the latter.
Assume that frj = f(jhx; rhz) is already known, where j = 1, 2, . . . N . From

e
i khx

= frN
frN−1

(4.12)

we determine the wave number at the upper boundary. If its real part is
positive—fine, it is an outgoing wave. If it is negative, then k is modified
to k̄ = Im k. Now a factor γ = exp(i k̄hx) is calculated such that frN+1 = γfrN is
used to work out the second derivative at the boundary. An analogous procedure
is applied to the lower boundary.
The following program implements such transparent boundary conditions.

1 % this file is transp_bc.m
2 CW=10.0; % computational window
3 BW=1.0; % Gaussian beam width
4 LAMBDA=0.633; % helium neon laser
5 k0=2*pi/LAMBDA;
6 NX=128; % points on x axis
7 HX=CW/(NX-1); % x axis spacing
8 HZ=5*HX; % propagation step
9 x=linspace(-0.5*CW,0.5*CW,NX)’;

10 E=exp(-(x/BW).^2); % initial field
11 u=0.5i*HZ/(2*k0);
12 main=-2*u*ones(NX,1)/HX^2;
13 next=u*ones(NX-1,1)/HX^2;
14 FW=eye(NX)+diag(next,-1)+diag(main,0)+diag(next,1); % forward
15 BW=eye(NX)-diag(next,-1)-diag(main,0)-diag(next,1); % backward
16 NZ=100; % number of propagation steps
17 hist=zeros(NX,NZ); % storage for history
18 for r=1:NZ

10G.R.Hadley, Transparent boundary condition for the beam propagation method, IEEE
Journal of Quantum Electronics 28 (1992) 363-370
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19 hist(:,r)=abs(E).^2;
20 E=one_step(HX,u,FW,BW,1e-4,E);
21 end;
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Figure 7: Propagation of a Gaussian beam by the Crank-Nicholson fi-
nite difference scheme. Transparent boundary conditions have been im-
plemented.

The function one_step propagates the field by one step. It implements bound-
ary conditions which guarantee transparency.

1 % this file is one_step.m
2 function new=one_step(HX,u,FW,BW,TINY,old)
3 NX=size(old,1);
4 FF=FW;
5 BB=BW;
6 if abs(old(1))>TINY
7 k=i/HX*log(old(2)/old(1));
8 if real(k)<0
9 k=i*imag(k);

10 end;
11 tbc=exp(i*k*HX)*u/HX^2;
12 FF(1,1)=FF(1,1)+tbc;
13 BB(1,1)=BB(1,1)-tbc;
14 end;
15 if abs(old(NX))>TINY
16 k=-i/HX*log(old(NX)/old(NX-1));
17 if real(k)<0
18 k=i*imag(k);
19 end;
20 tbc=exp(i*k*HX)*u/HX^2;
21 FF(NX,NX)=FF(NX,NX)+tbc;
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22 BB(NX,NX)=BB(NX,NX)-tbc;
23 end;
24 new=BB\FF*old;

Figure 7 shows the improvement. Energy may pass the boundaries of the com-
putational window, and no reflections show up.

4.4 Propagation in a slab waveguide

In subsection 2.4 we have discussed a slab waveguide. A thin film on a glass
substrate is covered by air. We found, for helium-neon laser light, that there are
two guided TE and two guided TM modes. Let us now study how a Gaussian
beam entering at z = 0 will propagate. We choose the substrate refractive index
as reference index.
The previous programs have to be changed only slightly. Here is the listing:

1 % this file is prp_swg.m
2 function [x,z,hist]=prp_swg(BC);
3 % BC is the center of the Gaussian beam
4 CW=10.0; % computational window
5 LAMBDA=0.633; k0=2*pi/LAMBDA; % helium neon laser
6 NX=128; % points on x axis
7 HX=CW/(NX-1); % x axis spacing
8 HZ=10*HX; % propagation step
9 FW=1.8; % film width

10 EC=1.00; % cover permittivity
11 ES=1.49; % substrate permittivity
12 EF=1.52; % film permittivity
13 BW=1.0; % Gaussian beam width
14 x=linspace(-0.5*CW,0.5*CW,NX)’;
15 prm=ES*(x<0)+EF*((x>=0)&(x<=FW))+EC*(x>FW);
16 nref=sqrt(ES);
17 deps=prm-nref^2;
18 E=exp(-((x-BC)/BW).^2); % initial field
19 u=0.5i*HZ/(2*nref*k0);
20 main=u*(-2*ones(NX,1)/HX^2+k0^2*deps);
21 next=u*ones(NX-1,1)/HX^2;
22 FW=eye(NX)+diag(next,-1)+diag(main,0)+diag(next,1); % forward
23 BW=eye(NX)-diag(next,-1)-diag(main,0)-diag(next,1); % backward
24 NZ=250; % number of propagation steps
25 hist=zeros(NX,NZ); % storage for history
26 for r=1:NZ
27 hist(:,r)=abs(E).^2;
28 E=one_step(HX,u,FW,BW,1e-4,E);
29 end;
30 z=[0:HZ:(NZ-1)*HZ];

We present the intensity as a contour plot in Figure 8. Note that power is
radiated mainly into the substrate the permittivity of which is close to that of
the film.
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Figure 8: A Gaussian beam is inserted into a slab waveguide. The beam
center is at the middle of the film. Propagation is from left to right.
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Figure 9: Power within the computational window vs. propagation dis-
tance for the previous propagation calculation.

It is interesting to study the power within the computational window which we
have depicted in Figure 9. For a short distance it remains constant because the
beam has not yet reached the boundaries of the computational window. It then
falls off, and after a certain length it becomes constant because the mode is well
guided within the computational window. About 11% of the original power are
radiated off.
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If the center of the Gaussian beam is at the interface between film and substrate,
the situation looks different, as shown in Figure 10. Now 27% of the incident
power are radiated off.
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Figure 10: The center of the Gaussian beam is at the interface between
film and substrate

In order to minimize insertion losses, a smooth transition from one waveguide (a
glass fiber, say) to another waveguide (a rib waveguide, for example) has to be
provided for. How to design such a taper is outside the scope of these lectures.

4.5 Other propagation methods

Although we have demonstrated the finite difference propagation method for
planar waveguides, all interesting structures are made of strip waveguides with a
two-dimensional cross section. In section 3 we discussed that the linear operators
to be dealt with can be approximated by sparse matrices. A cross section
mesh of 100 × 100 points corresponds to a 104 × 104 matrix and, if stored in
full, requires 800 MByte of RAM. Since there is more than one such matrix
involved, even two-dimensional problems would be out of scope of ordinary
computers, not to mention three-dimensional structures. Note that the Crank-
Nicholson propagation scheme requires to multiply E(z) by I−ihzP/2 to obtain
E(z + hz/2) and to solve the system of linear equations (I + ihzP/2)E(z +
hz) = E(z+hz/2). Fortunately there are algorithms for solving linear equations
within the framework of sparse matrices. In the following we describe two rather
popular alternatives to the finite difference propagation method.

4.5.1 Method of lines

The method of lines represents the x, y, z continuum by lines xi(z), yj(z). The
field E = E(z) is represented by functions Ea(z) where a = (i, j). The Fresnel



30 4 PROPAGATION

equation now reads

−iE ′a =
∑
b

PabEb(z) . (4.13)

This is a set of coupled ordinary differential equations, although a mighty set.
The standard procedure to solve it is by diagonalizing the P matrix which
represents the Fresnel operator on the waveguide cross section. We may write

Pab =
∑
c

U†acpcUcb , (4.14)

where U is a unitary matrix because P is Hermitian. Ēa =
∑
b UabEb now is

subject to a set of uncoupled differential equations

−i Ē ′a = paĒa (4.15)

the solution of which is

Ēa(z) = e
i paz

Ēa(0) (4.16)

or

Ea(z) =
∑
b

U†ab e
i pbz

UbaEa(0) . (4.17)

As said above, working out the exponential of iPz by diagonalization is pro-
hibitive for two-dimensional cross section. A few of the eigenvalues correspond to
guided modes, the remaining thousands of eigenvalues refer to radiation modes.
Incoming radiation has to be suppressed, outgoing radiation may be represented
by a few lossy modes. By a tricky balance between simplicity, storage require-
ment, run-time and accuracy the method of lines has proven to be a serious
alternative to the finite difference method.

4.5.2 Operator splitting

This is the oldest beam propagation scheme11. It is tailored to the computa-
tional facilities of more than 30 years ago: random access memory was short
and had to be replaced by long program run times. There is an intuitive and a
mathematical foundation.
The Fresnel propagation operator consists of two parts. The first one is a cross
section Laplacian which describes propagation in free space. As we know, any
beam of light diverges when propagating in free space. The second contribution
characterizes focussing. The guiding structure has a higher refractive index than
the surrounding. The optical path through the centre of a lens is shorter than
an off-axis optical path which effect leads to focussing. The Fresnel equation
describes propagation in free space and focussing in infinitely rapid succession.

11J. A. Fleck, J. R. Morris, M. D. Feit: Appl. Phys. 10 (1976) 129
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We approximate it by finite steps of propagation in free space and focussing by
a permittivity profile.
Mathematically, the Fresnel propagation operator P = D + M is the sum of a
differential operator

D =
∂2
x + ∂2

y

2nk0
(4.18)

and a multiplication operator

M = k0δε

2n . (4.19)

Recall that n is a reference index and δε = ε(x, y) − n2. Both act on fields
depending on the cross section coordinates x, y.
D describes the propagation in a homogeneous medium of refractive index n
while M characterizes the focussing effect. These operators do not commute,
and the rule exp(A+B) = exp(A) exp(B) is not applicable.
However,

e
ihz(D +M)

≈ e
ihzD/2

e
ihzM

e
ihzD/2

(4.20)

is an approximation, the error being proportional to h3
z.

The operator splitting expression, as given by the right hand side of (4.20), is
applied as follows.
The field is Fourier transformed,

Ê1(kx, ky) =
∫

dxdy e
i (xkx + yky)

E1(x, y) . (4.21)

Then

Ê2(kx, ky) = e
−ihz(k2

x + k2
y)/4nk0

Ê1(kx, ky) (4.22)

is calculated. Fourier back transformation yields

E2(x, y) =
∫ dkx

2π
dky
2π e

−i (xkx + yky)
Ê2(kx, ky) . (4.23)

We now set

E3(x, y) = e
ihzk0δε(x, y)/2n

E2(x, y) (4.24)

and Fourier transform to

Ê3(kx, ky) =
∫

dxdy e
i (xkx + yky)

E3(x, y) . (4.25)
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Finally,

Ê4(kx, ky) = e
−ihz(k2

x + k2
y)/2nk0

Ê3(kx, ky) (4.26)

is worked out which is the last part of the first propagation step and the first part
of the next. This sequence of operations is continued with possibly modifying
δε if the structure changes along the propagation direction.
Note that the method of operator splitting requires no additional storage for
matrices but depends on a fast Fourier transform algorithm. Also note that each
single propagation step is described by applying a unitary matrix. Hence, the
norm ||E|| of the original field remains constant. Without transparent boundary
conditions or another means to avoid reflections the operating splitting propa-
gation method runs into the same problems as discussed earlier.
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5 Optical Anisotropy

Up to now we always assumed that the electrical field strength E and the di-
electric displacement D were parallel. This is true for optically isotropic media,
like glass, silicon, or other cubic crystals or amorphous substances. Therefore,
we always talked about permittivity as a scalar, as in Di = εε0Ei. In general
it is still true that, for sufficiently small electric fields, displacement and field
strength are proportional, but they are not necessarily parallel. We therefore
have to write12 Di = εijε0Ej , with the permittivity tensor εij . This section
discusses effects of optical anisotropy.

5.1 Permittivity tensor

We talk about a system of particles at xa with charge qa. The polarization at
x is

Pi(x) =
∑
a

qaxiδ
3(x− xa) . (5.1)

Denote by H the Hamiltonian of matter which is perturbed by the interaction
with an electric field E(t,x). The Hamiltonian now is

Ht = H −
∫

d3xPi(x)Ei(t,x) . (5.2)

We assume that the system was in a Gibbs state

G = e
(F −H)/kBT

(5.3)

before the perturbation has set in. F is the free energy, kB denotes Boltzmann’s
constant, and T is the temperature of the equilibrium state.
Within the framework of linear response theory, the effect of the perturbation
on the polarization may be worked out:

Pi(t,x) =
∫ ∞

0
dτ
∫

d3ξ Γij(τ, ξ)Ej(t− τ,x− ξ) . (5.4)

Here Pi(t,x) = 〈Pi(x)〉 t is the expectation value of the polarization in the
time-dependent perturbed state. The Green’s function Γij is found to be

Γij(τ, ξ) = 〈 i
~

[U−τPi(ξ)Uτ , Pj(0) ]〉 (5.5)

where Ut denotes time translation by the unperturbed Hamiltonian,

Ut = e
−i tH/~

. (5.6)
12Einstein’s summation convention: a sum over doubly occurring indices is silently under-

stood.
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The expectation value in (5.5) is with the unperturbed Hamiltonian. Put oth-
erwise, the unperturbed system knows how to react on a perturbation.
By Fourier transforming all quantities13 we arrive at

P̂i(ω, q) = ε0χij(ω, q) Êj(ω, q) (5.7)

where the susceptibility tensor χji is

χij(ω, q) = 1
ε0

∫ ∞
0

dτ e
iωτ ∫

d3ξ e
−i q ·ξ

Γij(τ, ξ) . (5.8)

The permittivity εij = δij +χij can thus be calculated, in principle. It depends
on angular frequency ω, on a wave vector q, and on all parameters which enter
the Gibbs state, such as temperature or quasi-static external fields.
Matter in its solid state has a time scale which is governed by the speed of
sound. Since this is so much smaller than the speed of light, we may write

χij(ω, q) = χ
(0)
ij (ω) + χ

(1)
ijkqk + . . . . (5.9)

The first contribution is the ordinary susceptibility, it depends on angular fre-
quency only. The second term describes optical activity. It is responsible for
rotating the polarization vector of a linearly polarized wave by a few degrees
per centimeter which is a tiny effect. We will not discuss optical activity here
and denote the susceptibility by χij(ω) = χ0

ij(ω) henceforth.
The permittivity should be split into a Hermitian and an anti-Hermitian con-
tribution, εij = ε ′ij + i ε ′′ij . The Hermitian, or refractive part ε ′ is responsible
for refraction, for the bending of light rays. The anti-Hermitian, or absorptive
contribution ε ′′ causes absorption. The dissipation-fluctuation theorem assures
that ε ′′ is non-negative in accordance with the second law of thermodynamics:
light energy is transformed into heat, the opposite is impossible.
The refractive and absorptive parts of the permittivity tensor are not indepen-
dent, they obey the Kramer-Kronigs dispersion relation

ε ′ij(ω) = δij +
∫ du

π

ε ′′ij(u)
u− ω

, (5.10)

where the principal value integral is understood. There is no refraction without
absorption. It is however possible that the absorptive part of the permittiv-
ity tensor almost vanishes in an entire frequency range. We then speak of a
transparency window.
Let us mention another useful relation which can be derived by studying (5.5)
with respect to time reversal. It turns out that the permittivity is a symmetric
tensor provided that an external magnetic field is reversed. Denoting external,
or quasi-static fields by Ē and B̄, Onsager’s relations amount to

εij(ω, Ē, B̄) = εji(ω, Ē,−B̄) . (5.11)
13The Fourier transform of a convolution is the product of the Fourier transforms.



5.2 Anisotropic waveguides 35

5.2 Anisotropic waveguides

We assume a material without magneto-optic effect. By Onsager’s relation
the permittivity tensor is symmetric and can be diagonalized by an orthogonal
coordinate transformation. We assume the axes of the coordinate system to
coincide with the optical axes. In this case the permittivity is a diagonal matrix
with entries εx, εy, εz.
Let us comment first on slab waveguides.
Our previous analysis, that there are TE and TM modes, remains valid.

E =

 0
E
0

 and H = 1
iωµ0

 −iβE0
E ′

 (5.12)

solves Maxwell’s equations provided the TE mode equation

E ′′ + k2
0εyE = β2E (5.13)

is satisfied. E and E ′ have to be continuous.
Likewise,

E = 1
−iωε0

 −iβH/εx0
H ′/εz

 and H =

 0
H
0

 (5.14)

solve all Maxwell equations if the TM mode equation

εx
d

dxε
−1
z

d

dxH + k2
0εxH = β2H (5.15)

holds true. H and H ′/εz must be continuous.
For strip waveguides the mode equations become very complicated, and we
refrain from discussing the various approximation schemes which have been put
forward. The deviations from isotropy are usually rather small and may be
dealt with as a perturbation.
So let us discuss a waveguide with permittivity

εij = ε̄δij + ∆εij . (5.16)

For the following discussion the inverse tensor

ηij = η̄ + ∆ηij (5.17)

is the more suitable quantity, where η̄ = 1/ε̄ and ∆ηij = −∆εij/ε̄2.
The wave equation to be solved is (1.24), namely

curl ε−1 curlH = LH = k2
0H , (5.18)
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where

curl =

 0 −iβ ∂y
iβ 0 −∂x
−∂y ∂x 0

 (5.19)

is the curl operator for a strip waveguide. Note that η in (5.18) is a tensor.
We define the following scalar product for vector fields:

(g,f) =
∫

dxdy g∗i (x, y) fi(x, y) . (5.20)

With this scalar product, the curl operator is symmetric. Since we assume a
transparent medium, the permittivity tensor is Hermitian, and so is η. It follows
that the mode operator L is also symmetric. Its eigenvalues k2

0 may be obtained
from

k2
0 = ( curlH, η curlH)

(H,H) = Φ(H) . (5.21)

We have introduced in (5.21) a functional f → Φ(f) of vector fields. It is a
simple exercise to show that Φ is stationary at mode fields:

d

ds
Φ(H + s δH )

∣∣∣∣
s=0

= 0 . (5.22)

Now, the eigenvalues k2
0 of (5.21) depend twofold on ∆η, directly and indirectly

via the dependency of the mode fields on the inverse permittivity. The latter
effect, however, vanishes because the functional Φ is stationary at solutions of
the wave equation. Therefore

∆k2
0 = ( curlH,∆η curlH)

(H,H) (5.23)

holds true in first order perturbation theory.
This change in ∆k2

0 must be compensated by a shift ∆β of the propagation
constant:

∆k2
0 + dk2

0
dβ2 ∆β2 = 0 (5.24)

where we again may exploit that the derivative dk2
0/dβ

2 does not depend im-
plicitly on β. With

dk2
0

dβ2 =

∫
dx dy η̄(H2

x +H2
y )∫

dxdy (H2
x +H2

y +H2
z )

(5.25)
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we finally arrive at

∆β = − 1
2β

∫
dxdy { curlH}i ∆ηij { curlH}j∫

dxdy η̄ (H2
x +H2

y )
. (5.26)

There are many variations of this formula. The effect of anisotropy on the prop-
agation constant may be expressed in the electric fields, this or that component
can be removed by the divergence equation or because it is small, and so forth.
(5.26) however is free from unnecessary approximations.

5.3 Non-reciprocal effects

We discuss in this subsection a special, but most important optical anisotropy,
namely the Faraday effect. We shall explain why magnetism must be involved
to achieve non-reciprocal light propagation.

5.3.1 The Faraday effect

Maxwell’s equation ε0 divE = ρ, divB = 0, curlB/µ0 = j + ε0Ė and
curlE = −Ḃ are compatible with time reversal. If E,B, ρ and j is a solution,
then E? = E,B? = −B, ρ? = ρ and j? = −j is a solution as well, where
f?(t,x) = f(−t,x). It can be seen from S = E×H that time reversal implies
the reversal of motion. If there is a wave travelling in forward direction, there
is an identical wave travelling backward. Not quite. The magnetic field has an
oscillating part and may have a quasi-static contribution. That the oscillating
part is reversed is a simple consequence of the wave equation. However, if the
quasi-static magnetic field affects the propagation of light, it must be reversed
as well. On the other hand, if light passes through a device with a built-in
magnetization, the reciprocity between forward and backward propagation may
fail.
We say that a material has magneto-optic properties if an externally applied
magnetic field or a spontaneous magnetization contributes to the permittivity
of the material. For example, some garnets which are ferri-electric and com-
pletely transparent at the near infrared are to be described by the following
permittivity14:

εij = ε δij + iKεijkMk . (5.27)

As discovered by Faraday, the polarization vector of a wave rotates by an angle
α = zΘF proportional to the propagation distance z. The specific Faraday
rotation15 ΘF of specially grown garnets may be as large as 100 full revolutions
per millimeter propagation, at λ = 1.3 µm.
By the way, (5.27) is compatible with Onsager’s relation εij(M) = εji(−M).
Since εij = ε∗ji characterizes the refractive part of the permittivity, a term linear
in a magnetic field must be antisymmetric and purely imaginary.

14εijk is the totally antisymmetric Levi-Civita symbol
15ΘF = k0KM/2n where n is the refractive index
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5.3.2 Waveguide isolators

The dimensionless quantity ξ = KM is very small, therefore magneto-optic non-
reciprocal effects are rather subtle. They rely on a small effect to be repeated
rather often the consequence of which is that effects of deviations from the
design parameters are multiplied as well. Therefore, fabrication tolerances are
rather strict which fact has prevented a robust, reliable, temperature insensitive
integrated-optical isolator so far. The subject is still in the stage of development.
Optical isolators are required for protecting lasers from reflected light of their
own, but also for circulators and so forth.

Non-reciprocal mode conversion For longitudinal magnetization the per-
mittivity tensor is

εij =

 ε iKM 0
−iKM ε 0

0 0 ε

 . (5.28)

It couples the Ex and Ey components of the electric field and thereby TE and
TM modes. A mode which is TE at z = 0 should be propagated until it is half
TE and half TM. Upon reflection the conversion continues, and at z = 0 it is
purely TM and might be absorbed16

The degree

R = Θ2
F

Θ2
F + (∆β/2)2 sin2(z

√
Θ2
F + (∆β/2)2) (5.29)

of TE/TM conversion after propagating the distance z is limited by the prop-
agation constant mismatch ∆β = βTE − βTEM. All efforts to make ∆β vanish
have failed so far.

Non-reciprocal interferometry If the magnetization is transversal, the per-
mittivity tensor is

εij =

 ε 0 iKM
0 ε 0

−iKM 0 ε

 . (5.30)

TE modes are not affected, the propagation constants of TM modes are

β± = β̄ ± gKM (5.31)

where g is a geometry dependent dimensionless factor. ± stand for forward-
and backward propagation, respectively.
An integrated optical interferometer may be devised such that interference in
forward direction is constructive, but destructive in backward direction.

16TM modes are wider than TE modes. Properly positioned absorbers will affect TM modes
much stronger than TE modes.
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Non-reciprocal couplers As we know, light is not strictly confined within
the rib of a rib waveguide. If there are two adjacent waveguides, one may excite
the other. This effect is known as coupling.
If at least one of the waveguides is magneto-optic, the coupling lengths17 in
forward and backward direction are different. For lateral magnetization we
obtain

L± = L̄± gKM/k0 , (5.32)

where g is a geometry dependent dimensionless factor.
One may devise a coupler such that it couples an even number of time in forward
and an odd number in backward direction. Such devices are the most promising
candidates for a robust and working integrated optical isolator (which, in fact,
is a circulator). Since there are sufficiently many geometric parameters, even a
polarization independent isolator is feasible.

17Length after which the field has been transferred in toto from one to the other waveguide.
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A Program Listings

listing_all.m extracts picture source code embedded within the documenta-
tion. This guarantees that code and documentation coincide (literate program-
ming). The following program produces all pictures.

1 % this file is dwg_fig.m
2 listing_all; % extract ML and MetaPost source code
3 gi_wg;
4 print -depsc ’gi_wg.eps’;
5 ! epstopdf gi_wg.eps
6 clear all;
7 slab_wg;
8 print -depsc ’slab_wg.eps’;
9 ! epstopdf slab_wg.eps

10 clear all;
11 rib_wg;
12 mesh(mode1);
13 print -depsc ’mode1.eps’;
14 ! epstopdf mode1.eps
15 mesh(mode2);
16 print -depsc ’mode2.eps’;
17 ! epstopdf mode2.eps
18 mesh(prm);
19 view(-60,60);
20 print -depsc ’rib_wg.eps’
21 ! epstopdf rib_wg.eps
22 clear all
23 refl_bc;
24 mesh(hist);
25 print -depsc ’refl_bc.eps’;
26 ! epstopdf refl_bc.eps
27 clear all;
28 transp_bc;
29 mesh(hist);
30 print -depsc ’transp_bc.eps’;
31 ! epstopdf transp_bc.eps
32 clear all
33 [x,z,hist]=prp_swg(0.9);
34 contour(z,x,hist,32);
35 print -depsc ’prp_swg1.eps’;
36 ! epstopdf prp_swg1.eps
37 power=sum(hist,1);
38 power=power./power(1);
39 plot(z,power);
40 print -depsc ’prp_swg2.eps’;
41 ! epstopdf prp_swg2.eps
42 [x,z,hist]=prp_swg(0.0);
43 contour(z,x,hist,32);
44 print -depsc ’prp_swg3.eps’;
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45 ! epstopdf prp_swg3.eps
46 clear all
47 ! del *.eps
48 ! mp --tex=latex slabwg
49 ! epstopdf slabwg.1
50 ! del slabwg.1
51 ! del slabwg.log
52 ! del slabwg.mpx

For example, the following MATLAB code produces Figure 3.

1 % this file is slab_wg.m
2 lambda=0.6328; k0=2*pi/lambda;
3 d=1.8;
4 LARGE=100;
5 flm_n=1.52; flm_eps=flm_n^2;
6 sub_n=1.49; sub_eps=sub_n^2;
7 cov_n=1.00; cov_eps=cov_n^2;
8 h=0.0001;
9 eff_n=(sub_n+h:h:flm_n-h);

10 eff_eps=eff_n.^ 2;
11 flm_k_te=sqrt(flm_eps-eff_eps);
12 flm_k_tm=flm_k_te/flm_eps;
13 sub_k_te=sqrt(eff_eps-sub_eps);
14 sub_k_tm=sub_k_te/sub_eps;
15 cov_k_te=sqrt(eff_eps-cov_eps);
16 cov_k_tm=cov_k_te/cov_eps;
17 cot_fd=cot(k0*flm_k_te*d);
18 rhs_te=(flm_k_te.^2-cov_k_te.*sub_k_te)...
19 ./flm_k_te./(cov_k_te+sub_k_te);
20 rhs_tm=(flm_k_tm.^2-cov_k_tm.*sub_k_tm)...
21 ./flm_k_tm./(cov_k_tm+sub_k_tm);
22 b1=(cot_fd<LARGE).*(eff_n<1.509);
23 c1=cot_fd.*b1+LARGE*~b1;
24 b2=(cot_fd>-LARGE).*(eff_n>1.510);
25 c2=cot_fd.*b2-LARGE*~b2;
26 plot(eff_n,c1,eff_n,c2,eff_n,rhs_te,eff_n,rhs_tm);
27 axis([sub_n,flm_n,-4,4]);


